

DEPARTMENT OF COMPUTER APPLICATIONS M.Sc., Artificial Intelligence and Data Science

REGULATIONS AND SYLLABUS [For the candidates admitted from the Academic Year 2023–2024 onwards]

ALAGAPPA UNIVERSITY

(A State University Accredited with "A+" grade by NAAC (CGPA: 3.64) in the Third Cycle andGraded as Category-I University by MHRD-UGC) Karaikudi -630003, Tamil Nadu.

ALAGAPPA UNIVERSITY DEPARTMENT OF COMPUTER APPLICATIONS

Science Campus, Karaikudi -630003, Tamil Nadu.

REGULATIONS AND SYLLABUS - (CBCS-University Department)

[For the candidates admitted from the Academic Year 2023 – 2024 onwards]

Name of the Department: Computer ApplicationsName of the Programme: M.Sc., Artificial Intelligence and Data ScienceDuration of the Programme: Full Time (Two Years)

Choice-Based Credit System

A choice-Based Credit System is a flexible system of learning. This system allows students to gain knowledge at their own tempo. Students shall decide on electives from a wide range of elective courses offered by the University Departments in consultation with the Department committee. Students undergo additional courses and acquire more than the required number of credits. They can also adopt an inter-disciplinary and intra-disciplinary approach to learning, and make the best use of the expertise of available faculty.

Programme

"Programme" means a course of study leading to the award of a degree in a discipline.

Courses

'Course' is a component (subject paper) of a programme. Each course offered by the Department is identified by a unique course code. A course contains lectures/ tutorials/laboratory/seminar/project / practical training/report writing /Viva-voce, etc or a combination of these, to meet effectively the teaching and learning needs.

Credits

The term "Credit" refers to the weightage given to a course, usually in relation to the instructional hours assigned to it. Normally in each of the courses credits will be assigned on the basis of the number of lectures/tutorial/laboratory and other forms of learning required to complete the course contents in a 15-week schedule. One credit is equal to one hour of lecture per week. For laboratory/field work one credit is equal to two hours.

Semesters

An Academic year is divided into two Semesters. In each semester, courses are offered in 15 teaching weeks and the remaining 5 weeks are to be utilized for conduct of examination and evaluation purposes. Each week has 30 working hours spread over 5 days a week.

Medium of Instruction: English

Departmental committee

The Departmental Committee consists of the faculty of the Department. The Departmental Committee shall be responsible for admission to all the programmes offered by the Department including the conduct of entrance tests, verification of records, admission, and evaluation. The Departmental Committee determine the deliberation of courses and specifies the allocation of credits semester-wise and course-wise. For each course, it will also identify the number of credits for lectures, tutorials, practical, seminars etc. The courses (Core/Discipline Specific Elective/Non-Major Elective) are designed by teachers and approved by the Departmental Committees. Courses approved by the Departmental Committees shall be approved by the Board of Studies/Broad Based Board of Studies. A teacher offering a course will also be responsible for maintaining attendance and performance sheets (CIA -I, CIA-II, assignments and seminar) of all the students registered for

the course. The Non-major elective programme, MOOCs coordinator and Internship Mentor are responsible for submitting the performance sheet to the Head of the department. The Head of the Department consolidates all such performance sheets of courses pertaining to the programmes offered by the department. Then forward the same to be Controller of Examinations.

Programme Educational Objectives

PEO-1	To implement Artificial Intelligence and Data Science techniques such as			
	search algorithms, neural networks, machine learning and data analytics for solving			
	a problem and designing novel algorithms for successful career and			
	entrepreneurship.			
PEO-2	To offer high-grade, value-based Post-graduate programme in Computer Science -			
	Specialization in Artificial Intelligence and Data Science			
PEO-3	To investigate the requirements of a problem and find the solution to them using			
	computing principles.			
PEO-4	To gain knowledge for creating and evaluating computer based system, components			
	and process to meet the specific needs of applications			
PEO-5	To utilize current techniques and tools necessary for complex computing practices			
PEO-6	To bridge the gap between industry and academia by framing curricula and syllabi			
	based on industrial and societal needs.			
PEO-7	To gain practical, hands-on experience with statistics programming languages and			
	big data tools			
PEO-8	To develop skilled professional workforce that is prepared to address the increasing			
	needs in the rapidly expanding area of Data Science			
PEO-9	To provide skills in quantitative data analysis, data mining, data modeling and			
	prediction, data storage and management, machine learning, big data processing,			
	data visualization, multimedia big data, programming and communication skills.			
PEO-10	To apply quantitative modeling and data analysis techniques to the solution of real			
	world business problems, communicate findings, and effectively present results			
	using data visualization techniques.			

Programme Specific Objectives

PSO-1	To understand, analyze and develop essential proficiency in the areas related to data				
	science and artificial intelligence in terms of underlying statistical and				
	computational principles and apply the knowledge to solve practical problems.				
PSO-2	To identify the need and develop the skill required to become computing, AI and				
	Data Scientist professional.				
PSO-3	To improve the proficiency in developing applications with required AI Data				
	Science domain knowledge.				
PSO-4	To classify opportunities and use innovative ideas to create value and wealth for the				
	betterment of individual and society.				
PSO-5	To design applications for desired needs with appropriate considerations for the				
	needs of societal and environmental aspects				

Problem Solving Skill: Apply knowledge of Management theories and Human
Resource practices to solve business problems through research in Global context.
Decision Making Skill: Foster analytical and critical thinking abilities for data-based
decision-making.
Ethical Value: Ability to incorporate quality, ethical and legal value-based perspectives
to all organizational activities.
Communication Skill: Ability to develop communication, managerial and
interpersonal skills.
Individual and Team Leadership Skill: Capability to lead themselves and the team to
achieve organizational goals.
Employability Skill: Inculcate contemporary business practices to enhance
employability skills in the competitive environment.
Entrepreneurial Skill: Equip with skills and competencies to become an entrepreneur
Contribution to Society: Succeed in career endeavors and contribute significantly to
society.
Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one's own work, as a
member and leader in a team, to manage projects and in multidisciplinary environments.
Life-long learning: Recognize the need for, and have the preparation and ability to
engage in independent and life-long learning in the broadest context of technological
change.

Programme Specific Outcomes (PSO)

PSO-1	To upgrade knowledge and undertake further study and research in Artificial Intelligence
	according to the need of society.
PSO-2	To combine the knowledge of Human Cognition, AI, Machine Learning and Data
	Engineering for designing systems.
PSO-3	To expose the techniques and developments in various domains where AI can be
	applied.
PSO-4	To model computational problems by applying mathematical concepts and solving real-
	world problems using algorithmic techniques.
PSO-5	To become a skilled Data Scientist in industry, academia and government.

Eligibility for admission

Candidates for admission to the first year of the M.Sc (AI &DS)programme shall be required to have passed with a minimum of 60% marks in Part-III (minimum 55% marks for SC/ST candidates) in any one of the following examinations of any recognized University:

B.Sc. Degree in Mathematics / Statistics / Applied Sciences / Computer Science / Information Technology (OR) B.Sc. Degree in Physics / Chemistry / Electronics as major subject and Mathematics as ancillary subject (OR) B.C.A./B.Com./B.B.A.(OR) qualification equivalent thereto. The candidate should have studied 10+2+3 pattern with Mathematics/Statistics/Business Mathematics in +2 levels.

Bridge Course

The University recommended two to three weeks bridge courses for the non-computer science background students covering essential basics required to pursue two year MCA programme from the academic year 2022-23.

Suggested Bridge Courses:

- i. Introduction to Information Technology
- ii.Programming in C
- iii. Introduction to Database Systems
- iv. Basics of Computer Networks
- v. Problem Solving Techniques

Minimum Duration of programme

The programme is for a period of two years. Each year shall consist of two semesters' viz. Odd and Even semesters. Odd semesters shall be from June / July to October / November and even semesters shall be from November / December to April / May. Each semester there shall be 90 working days consisting of 6 teaching hours per working day (5 days/week).

Components

MCA programme consists of a number of courses. The term "course" is applied to indicate a logical part of the subject matter of the programme and is invariably equivalent to the subject matter of a "paper" in the conventional sense. The following are the various categories of the courses suggested for the MCA programme:

A. Core courses (CC)- "Core Papers" means "the core courses" related to the programme concerned including practical's and project work offered under the programme and shall cover core competency, critical thinking, analytical reasoning, and researchskill.

B. Discipline-Specific Electives (DSE) means the courses offered under the programme related to the major but are to be selected by the students, shall cover additional academic knowledge, critical thinking, and analytical reasoning.

C. Non-Major Electives (NME)- Exposure beyond the discipline

- Students have to undergo a total of two Non Major Elective courses with 2 credits offered by other departments (one in II Semester another in IIISemester).
- A uniform time frame of 3 hours on a common day (Tuesday) shall be allocated for the Non-MajorElectives.
- Non Major Elective courses offered by the departments pertaining to a semester should be announced before the end of previous semester.

D. Registration process: Students have to register for the Non-Major Elective course within 15 days from the commencement of the semester either in the department or NME Portal (University Website).

E. Self-Learning Courses from MOOCs platforms.

- MOOCs shall be on voluntary for thestudents.
- Students have to undergo a total of 2 Self Learning Courses (MOOCs) one in II semester and another in III semester.
- The actual credits earned through MOOCs shall be transferred to the credit plan of programmes as extracredits. Otherwise 2 credits/course be given if the Self Learning Course (MOOCs) is without credit.
- While selecting the MOOCs, preference shall be given to the course related to employabilityskills.

F. Projects: The duration of the Project shall be six months in the fourthsemester. The candidate shall undergo Project Work during the final semester. The candidate should prepare report of work for the project and should get approval from the guide. The candidate, after completing the project work, shall be allowed to submit it to the University departments at the end of the final semester.

The candidate should prepare three copies of the project report and submit the same for the evaluation of examiners. After evaluation, one copy will be retained in the department library, one copy will be retained by the guide and the student shall hold onecopy.

Teaching Methods

• Presentation with visual aids like Smart Board and Power Point/Pdf slide:

A presentation delivers content through oral, audio and visual channels allowing teacher-learner interaction and making the learning process more attractive. Through presentations, teachers can clearly introduce difficult concepts by illustrating the key principles and by engaging the students in active discussions. When presentations are designed by learners, their knowledge sharing competences, their communication skills and their confidence are developed.

• Demonstration especially for Practical Courses:

Demonstration is a specific type of presentation and a technique of teaching by example rather than simple explanation. Demonstration is a visual practical presentation of a concept and process. The learners perform a demonstration to ascertain learning. The teacher performs the tasks step-by-step to enable the learners to repeat the same task independently or in groups.

• Group Discussion:

Group Discussion is mainly used to generate ideas, increase learner's confidence in their answers, encourage broad participation, promote higher level of reasoning and learn concepts in-depth, develop skills such as teamwork, critical thinking, inter personal communication and peer teaching.

• Seminar:

Students take the initiative to preview the course content, find evidence and answers to questions assigned before course, share knowledge points with peers during the course. Students develop the quality of listening, questioning scientifically, debating with evidence, and collaborating during the discussion and communications.

• Quiz:

It is sometimes used to assess learners. It often has fewer questions of lesser difficulty and requires less time for completion than a test. This gives the teacher an instant idea of what learners already know about the topic. Quizzes can be used to revise learner's retention of previous lessons or at the end of a lesson. This allows the teacher to get feedback on learner's progression.

Attendance

Students must have earned 75% of attendance in each course for appearing for the examination. Students who have earned 74% to 70% of attendance need to apply for condonation in the prescribed form with the prescribed fee. Students who have earned 69% to 60% of attendance need to apply for condonation in the prescribed form with the prescribed fee along with the Medical Certificate. Students who have below 60% of attendance are not eligible to appear for the End Semester Examination (ESE). They shall re- do the semester(s) after completion of the programme.

Examination

The examinations shall be conducted separately for theory and practical's to assess (remembering, understanding, applying, analyzing, evaluating, and creating) the knowledge required during the study. There shall be two systems of examinations viz., internal and external examinations. The internal examinations shall be conducted as Continuous Internal Assessment tests I and II (CIA Test I & II).

a. Internal Assessment

The internal assessment shall comprise a maximum of 25 marks for each subject. The following procedure shall be followed for awarding internal marks.

S.No	Content	Marks	
1	Average marks of two CIA tests	15	
2	Seminar/Group Discussion/Quiz	5	
3	Assignment	5	
	Total	25	

Theory - 25 marks

Practical - 25 marks

S.No	Content	Marks
1	Average marks of two CIA tests	15
2	Lab observation note	10
	Total	25

Project -	- 50	marks
-----------	------	-------

S.No	Content	Marks
1	Review First	20
2	Review Second	20
3	Presentation	10
	Total	50

External Examination

There shall be examinations at the end of each semester, for odd semesters in the month of October / November; for even semesters in April / May.

A candidate who does not pass the examination in any course(s) may be permitted to appear in such failed course(s) in the subsequent examinations to be held in October / November or April / May. However candidates who have arrears in Practical shall be permitted to take their arrear Practical examination only along with Regular Practical examination in the respective semester.

A candidate should get registered for the first semester examination. If registration is not possible owing to shortage of attendance beyond condonation limit / regulation prescribed OR belated joining OR on medical grounds, the candidates are permitted to move to the next semester. Such candidates shall re-do the missed semester after completion of the programme.

For the Project Report the maximum marks will be 100 marks for project report evaluation and for the Viva-Voce it is 50 marks. Each candidate shall be required to appear for Viva-Voce Examination (in defense of the Project).

A. Scheme of External Examination (Question Paper Pattern)

Theory - Maximum 75 Marks

Section A	10 questions. All questions carry equal marks. (Objective type questions)	10 x 1 = 10 Marks	10 questions – 2 each from every unit
Section B	5 questions Either / or type like 1.a (or) b. All questions carry equal marks and each answer should not exceed500 words.	5 x 5 = 25	5 questions – 1 each from every unit
Section C	5 questions Either / or type like 1.a (or) b. All questions carry equal marks and each answer should not exceed 1000 words.	5 x8 = 40	5 questions – 1 each from every unit

Practical – Maximum 75 Marks

Section A	Software Programmes (2Nos)	50 Marks
Section B	Record note	10 Marks
Section C	Vivo voce	15 Marks

Project report- Maximum 150 Marks

Project report	100 Marks
Vivo voce	50 Marks

Results

The results of all the examinations will be published through the Department where the student underwent the course as well as through University Website

Passing Minimum

- A candidate shall be declared to have passed in each course if he/she secures not less than 40% marks in the End Semester Examinations and 40% marks in the Internal Assessment and not less than 50% in the aggregate, taking Continuous assessment and End Semester Examinations marks together.
- The candidates not obtained 50% in the Internal Assessment are permitted to improve their Internal Assessment marks in the subsequent semesters (2 chances will be given) by writing the CIA tests and by submitting assignments.
- Candidates, who have secured the pass marks in the End-Semester Examination and in the CIA but failed to secure the aggregate minimum pass mark (E.S.E + C I.A), are permitted to improve their Internal Assessment mark in the following semester and/or in University examinations.
- A candidate shall be declared to have passed in the Project if he /she get not less than 40% in each of the Project Report and Viva-Voce and not less than 50% in the aggregate of both the marks for Project Report and Viva-Voce.
- A candidate who gets less than 50% in the Project must resubmit the report. Such candidates need to take again the Viva-Voce on the resubmitted Project report.

Grading of the Courses

The following table gives the marks, Grade points, Letter Grades and classifications meant to indicate the overall academic performance of the candidate.

RANGE OF MARKS	GRADE POINTS	LETTER GRADE	DESCRIPTION
90 - 100	9.0 - 10.0	0	Outstanding
80 - 89	8.0 - 8.9	D+	Excellent
75 - 79	7.5 – 7.9	D	Distinction
70 - 74	7.0 – 7.4	A+	Very Good
60 - 69	6.0 - 6.9	Α	Good
50 - 59	5.0 - 5.9	В	Average
00 - 49	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

Conversion of Marks to Grade Points and Letter Grade (Performance in Paper / Course)

• Successful candidates passing the examinations and earning GPA between 9.0 and 10.0 and marks from 90 – 100 shall be declared to have Outstanding (O).

- Successful candidates passing the examinations and earning GPA between 8.0 and 8.9 and marks from 80 89 shall be declared to have Excellent (D+).
- Successful candidates passing the examinations and earning GPA between 7.5 7.9 and marks from 75 79 shall be declared to have Distinction (D).
- Successful candidates passing the examinations and earning GPA between 7.0 7.4 and marks from 70 74 shall be declared to have Very Good (A+).
- Successful candidates passing the examinations and earning GPA between 6.0 6.9 and marks from 60 69 shall be declared to have Good (A).
- Successful candidates passing the examinations and earning GPA between 5.0 5.9 and marks from 50 59 shall be declared to have Average (B).
- Candidates earning GPA between 0.0 and marks from 00 49 shall be declared to have Reappear (U).
- Absence from an examination shall not be taken as an attempt.
- From the second semester onwards the total performance within a semester and continuous performance starting from the first semester are indicated respectively by Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA). These two are calculated by the following formulate

GRADE POINT AVERAGE (GPA) = $\Sigma_i C_i G_i / \Sigma_i C_i$

GPA = Sum of the multiplication of Grade Points by the credits of the coursesSum of the credits of the courses in a Semester

CGPA	Grade	Classification of Final Result
9.5 - 10.0	0+	First Class – Exemplary*
9.0 and above but below 9.5	0	3
8.5 and above but below 9.0	D++	First Class with Distinction*
8.0 and above but below 8.5	D+	
7.5 and above but below 8.0	D	1.7
7.0 and above but below 7.5	A++	First Class
6.5 and above but below 7.0	A+	
6.0 and above but below 6.5	A	
5.5 and above but below 6.0	B +	Second Class
5.0 and above but below 5.5	В	
0.0 and above but below 5.0	U	Re-appear

Classification of the final result

The final result of the candidate shall be based only on the CGPA earned by the candidate.

- Successful candidates passing the examinations and earning CGPA between 9.5 and 10.0 shall be given Letter Grade (O+), those who earned CGPA between 9.0 and 9.4 shall be given Letter Grade (O) and declared to have First Class –Exemplary*.
- Successful candidates passing the examinations and earning CGPA between 7.5 and 7.9 shall be given Letter Grade (D), those who earned CGPA between 8.0 and 8.4 shall be given Letter Grade (D+), those who earned CGPA between 8.5 and 8.9 shall be given Letter Grade (D++) and declared to have First Class with Distinction*.
- Successful candidates passing the examinations and earning CGPA between 6.0 and 6.4 shall be given Letter Grade (A), those who earned CGPA between 6.5 and 6.9 shall be given Letter Grade (A+), and those who earned CGPA between 7.0 and 7.4 shall be given Letter Grade (A++) and declared to have First Class

- Successful candidates passing the examinations and earning CGPA between 5.0 and 5.4 shall be given Letter Grade (B), those who earned CGPA between 5.5 and 5.9 shall be given Letter Grade (B+) and declared to have passed in Second Class.
- Candidates those who earned CGPA between 0.0 and 4.9 shall be given Letter Grade (U) and declared to have Re-appear.
- Absence from an examination shall not be taken as an attempt.
- CUMULATIVE GRADE POINT AVERAGE (CGPA) = $\Sigma_n \Sigma_i C_{ni} G_{ni'} \Sigma_n \Sigma_i C_{ni}$

CGPA = <u>Sum of the multiplication of Grade Points by the credits of the entire rogramme</u> Sum of the credits of the courses for the entire Programme

Where 'Ci' is the Credit earned for Course i in any semester; 'Gi' is the Grade Point obtained by the student for Course i and 'n' refers to the semester in which such courses were credited.

CGPA (Cumulative Grade Point Average) = Average Grade Point of all the Courses passed starting from the first semester to the current semester.

Note: * The candidates who have passed in the first appearance and within the prescribed Semesters of the PG Programme are alone eligible for this classification.

Conferment of the Master's Degree

A candidate shall be eligible for the conferment of the Degree only after he/ she has earned the minimum required credits for the Programme prescribed therefore (i.e. 90 credits).

- a. All the candidates who have passed the examinations in all the prescribed courses shall be eligible for the award of the Degree of Master of Science in Computer Science.
- b. A Candidate who has passed all the examinations in the first attempt within two years of admission shall be declared to have passed in First Class with Distinction provided he/she secures more than 75% marks in the aggregate.
- c. A Candidate who has passed all the examinations within FOUR years of admission shall be declared to have passed in First Class provided he/she secures not less than 60% marks in the aggregate.

Maximum duration of the completion of the programme

A student shall be permitted to continue the programme from I to IV semester irrespective of failure(s) in the courses of the earlier semesters. The candidate will qualify for the M.Sc degree only if he/she passes all the arrears courses with in a period of FOUR years.

Village Extension Programme

The Sivaganga and Ramanathapuram districts are very backward districts where a majority of people Lives in poverty. The rural mass is economically and educationally backward. Thus the aim of the introduction of this Village Extension Programme is to extend out to reach environmental awareness, social activities, hygiene, and health to the rural people of this region. The students in their third semester have to visit any one of the adopted villages within the jurisdiction of Alagappa University and can arrange various programs to educate the rural mass in the following areas for three day based on the theme.1. Environmental awareness 2.Hygiene and Health. A minimum of two faculty members can accompany the students and guide them.

BRIDGE COURSE - I

INTRODUCTION TO INFORMATION TECHNOLOGY

Objectives:

- To educate the beginners the fundamentals of computer hardware and software.
- To teach them the basic concepts of internet and programming concepts.

Internet and World Wide Web: Internet and World Wide Web-Web Multimedia-Recent Trends in IT- Anatomy of Computer-Central Processing Unit-Memory Input and Output Devices: Input and Output Devices-Secondary Storage Media-Introduction to Software-User Interfaces-Types of Operating Systems Word Processing: Word Processing: Formatting Documents-Word Processing Features-Desktop Publishing-Spreadsheet Applications & Database Applications-Internet Connectivity

Communications: Communications: Network Applications-The Electronic Web-Local Area Networks-Multimedia-IT in Business. **Programming and System Development:** Programming and System Development: Programming Languages-Programming Techniques-Personal, Social and Ethical issues.

Reference and Text Books:

Dennis P.Curtin, Kim Foley, KunalSen, Cathleen Morin, "Information Technology The Breaking Wave", Tata McGraw Hill Publication, 2017.

Outcomes:

- Learn word processing using MS word
- Understand about internet concepts

Online Resource:

https://jdgsmahilacollege.files.wordpress.com/2014/01/ch3.pdf

https://www.ebookbou.edu.bd/Books/Text/SST/DCSA/dcsa_1201/Unit-04.pdf

BRIDGE COURSE - II

PROGRAMMING IN C

Objectives:

- To understand structure of C program
- TounderstandArrays, Strings, Functions and Pointers

Basic Structure of C Programs – Programming Style – Character Set – C Tokens – Keywords and Identifiers – Constants, Variables and Data Types – Declaration of Variables – Defining Symbolic Constants – Declaring a variable as a constant. Operators and Expressions.**Managing I/O Operations**:Reading and Writing a Character – Formatted Input, Output. Decision making and branching – Flow of control **Arrays**:One-Dimensional Arrays – Declaration, Initialization – Two-Dimensional Arrays – Multi-dimensional Arrays – Dynamic Arrays – Initialization. **Strings**:Declaration, Initialization of String variables – Reading and Writing strings– String handling functions. **User-defined functions**:Need – Multi-function programs – Elements of user defined functions – Definition – Return values and their types – Function calls, declaration, category – All types of arguments and return values – Nesting of functions – Recursion – Passing arrays, Strings to functions – Scope visibility and life time of variables. **Structures and Unions:** Structure Definition – Giving Values to Members – Structure Initialization – Arrays of Structures – Arrays Within Structures – Structures Within Structures – Structures And Functions – Unions. **Pointers:** Introduction – Understanding Pointers – Accessing the Address of a Variable – Declaring and Initializing Pointers – Accessing a Variable through its Pointer.

Reference and Text Books:

E.Balagurusamy, 2012, 6th Edition *Programming in ANSI C*, Tata McGraw Hill Publishing Company. Ashok N.Kamthane, 2006, *Programming with ANSI and Turbo C*, Pearson Education Schaum's Outline Series, Gottfried, 2006, *Programming with C*, Tata McGraw Hill.

Outcomes:

- Able to understand and design the solution to a problem using C
- Understand and implement Structures, Arrays and function

Online Resource:

https://www.idc-

online.com/technical references/pdfs/information technology/Structures in C Programming.pdf

https://vpmpce.files.wordpress.com/2019/01/unit-5-acp.pdf

https://www.tutorialspoint.com/cprogramming/pdf/c_pointers.pdf

BRIDGE COURSE - III

INTRODUCTION TO DATABASE SYSTEMS

Objectives:

- To introduce the Database Architecture
- TounderstandData Normalization, Relational Algebra and its operations.

Introduction to Database Management Systems: Why a Database – Characteristics of Data in a Database – Database Management System: Transaction Management System – Concurrency Control – Security Management – Language Interface – Storage Management – Why DBMS – Types of Database Management Systems: Hierarchical Model – Network Model – Relational Model - Database Development Life Cycle : Database Development Life Cycle Phases - Database Architecture : Conceptual, Physical and Logical Database Models – Data Normalization Data Normalization : Keys and Relationships – First Normal Form – Second Normal Form – 3NF – BCNF – 4NF – 5NF – DKNF – Relational Algebra : Relational Algebraic Operations – UNION, INTERSECTION, DIFFERENCE – CARTESIAN PRODUCT – SELECT – PROJECT – RENAME – JOIN – DIVISION.

Reference and Text Books:

Alexis Leon, Mathews Leon, *Database Management Systems*, Tata McGraw Hill Education, 2008. ElmasriRamez, NavatheShamkant, *Fundamentals of Database System*, Pearson Education, 7th Edition, 2017. Raghu Ramakrishnan, Johannes Gehrke, *Database Management Systems*, Tata McGraw Hill Education, 2014.

Outcomes:

- Describe Normalization for Database design.
- Understand the Relational Algebraic Operations

Online Resource:

https://wanivipin.files.wordpress.com/2019/02/dbms_notes-unit-1-1.pdf

https://www.tutorialspoint.com/dbms/pdf/relational_algebra.pdf

BRIDGE COURSE - IV

BASICS OF COMPUTER NETWORKS

Objectives:

- To understand networking concepts and basic communication model
- To understand network architectures and components required for data communication.

Introduction to Computer Networks: Definition of a Computer Network, Classification of networks: Based on transmission technology, Based on the their scale, Local area networks, Metropolitan area networks, Wide area networks - Merits and De-merits of Layered Architecture, Service Primitives: Reference models: The OSI Reference Model, The TCP/IP Reference Model, Comparison of the OSI & the TCP/IP Reference Models-Network topologies; Linear Bus Topology, Ring Topology, Star Topology, Hierarchical or Tree Topology, Topology Comparison, Considerations when choosing a Topology -Switching; Circuit switching, Message switching, Packet switching, Implementation of packet switching, Relationship between Packet Size and Transmission time, Comparison of switching techniques- Multiplexing-Transmission medium-Data Link Layer-Network Layer-Transport Layer.

Reference and Text Books:

Andrew S. Tanenbaum and David J. Wetherall, 2011 "Computer Networks", 5th Edition, University of Washington, Pearson.

BhushanTrivedi, 2016, "Data Communication and Networks" Oxford University Press

K S Easwarakumar, R S Rajesh, R.Balasubramanian, 2010 "Computer Networks: Fundamental and Application", 1/e, Vikas Publishing.

Rajneesh Agarwal, 2011, "Data Communication and Computer Networks", 1/e, Vikas Publishing.

Outcomes:

- Able to understand the working principles of various application protocols
- Acquire knowledge about security issues and services available

Online Resource:

https://www.scribd.com/presentation/404951540/2140709-CN-UNIT-1

https://faculty.sfcc.spokane.edu/Rudlock/files/WP_Simoneau_OSIModel.pdf

https://samyzaf.com/braude/CLISERV/notes/Part_03.pdf

https://littleflowercollege.edu.in/upload/e_contents/files/29d3a76e1ea3718438a66e222d21956f.pdf

BRIDGE COURSE - V

PROBLEM SOLVING TECHNIQUES

Objectives:

- To acquire knowledge on problem solving techniques
- To understand the basics of programming

Introduction: Overview of computer-history-what is hardware-software-components of computer-input devicesoutput devices-memory-types of software- introduction to programming languages- assembler-interpreter-compiler

Problem solving: Identification of problem – steps of problem solving-overview of problem solving techniques-Algorithm-method of writing-Rules-Examples- Flowchart-Symbols used in flowchart-conditional statement-looping statements-connectors-Examples-Pseudo code-Definition-method of writing-data types-high level languages- logical operators-conditional statement-for loop-while loop-Data Structures-Examples

Programming: Architecture of a computer program- Programming languages- first Program -- Writing, compiling, and executing a program – finding errors and debugging

Reference and Text Books:

Ata Elahi Springer, 2018, Computer Systems: Digital Design, Fundamentals of Computer Architecture and Assembly Language. Harold Abelson, Structure and Interpretation of Computer Programs, 2nd Edition, MIT Electrical Engineering. Pradeep K. Sinha&PritiSinha, 2012 Computer Fundamentals.

Outcomes:

- Able to write algorithm, pseudo code
- Able to draw flowchart

Online Resource:

https://ncert.nic.in/textbook/pdf/kecs101.pdf

https://www.scribd.com/document/338384391/unit-1

M.Sc., Artificial Intelligence & Data Science- Programme Structure

S. No	Paper Codo	Core	Title of the paper	Credits Hours/ Week		Hours/ Wook	Marks		
	Coue		I Somostor			WEEK	T	F	Total
1	557101	Core 1	Principles of Data Science and Analytics		5	5	25	15 75	100a1
1	557102	Core 2	Relational Database Management		<u>J</u>	<u> </u>	25	75	100
2	557102		System		т	т	25		100
3	557103	Core 3	Python Programming		5	5	25	75	100
4.	557104	Core 4	Discrete Mathematics		4	4	25	75	100
5	557105	Core 5	Lab-I : Data Science Lab		2	4	25	75	100
6.	557106	Core 6	Lab-II : Python Programming Lab		2	4	25	75	100
		DSE*:1	1. Cloud Computing		3	3	25	75	100
7			2. Advanced Java Programming						
			3. Digital Image Processing						
			Library / Seminar/Yoga/			1			
			counselling/Field trip						
				2	25	30	175	525	700
			II Semester						
8	557201	Core 7	Data Mining and Warehousing		4	4	25	75	100
9	557202	Core 8	Artificial Intelligence and Machine		4	4	25	75	100
			Learning	6					
10	557203	Core 9	Web Technology	8	4	4	25	75	100
11	557204	Core 10	Design and Analysis of Algorithms	0	4	4	25	75	100
12	557205	Core 11	Lab-I: Algorithms Lab		2	4	25	75	100
13	557206	Core 12	Lab II: AI and Machine Learning Lab		2	4	25	75	100
14			DSE*:2 1. Deep Learning		3	3	25	75	100
			2. Cyber Security						
			3. Block Chain Technology						
15			NME	1	2	3	25	75	100
			Self-learning course (SLC) –MOOCs	List		Extr	a cred	it	
				2	25	30	200	600	800
			III Semester						
16	557301	Core 13	Big Data Analytics		4	4	25	75	100
17	557302	Core 14	Data Visualization		4	4	25	75	100
18	557303	Core 15	Virtual Reality and Augmented Reality		4	4	25	75	100
19	557304	Core 16	Internet of Things		4	4	25	75	100
20	557305	Core 17	Lab-I: Big Data Analytics Lab		2	4	25	75	100
21	557306	Core 18	Lab II: IoT Lab		2	4	25	75	100
22			DSE 1. Natural Language Processing		3	3	25	75	100
			* 3 2. Theory of Computation						
			3. Social Media Analytics						
23			NME		2	3	25	75	100
	ļ	Self-learning course (SLC) –MOOCs			Extr	a cred	it		
				2	25	30	200	600	800
			IV Semester						
24	557999	Core 19	Project Work Programme	1	15	30	50	150	200
				1	15	30	50	150	200
			Total	9	0+	120	625	1875	2500

	Discipline Specific Elective								
S.No	Paper Code	Title of the Paper							
DSE – I		4							
1.	557551	Cloud Computing							
2.	557552	Advanced Java Programming							
3.	557553	Digital Image Processing							
DSE – I	Ι	·							
1.	557554	Deep Learning							
2.	557555	Cyber Security							
3.	557556	Block Chain Technology							
DSE – I	Π	-							
1.	557557	Natural Language Processing							
2.	557558	Theory of Computation							
3.	557559	Social Media Analytics							

			SEMESTER-I						
Core: 1	Course code	PRINCIPLES	S OF DATA SCIENCE AND	Т	Credits: 5	Hours: 5			
	557101		ANALYTICS						
			UNIT I						
Objective 1	To define the	terms and conce	pts of data science						
Data Science	ce: Benefits an	l uses – facets of c	lata – Data Science Process: Ove	rview –	Defining resea	rch goals			
– Retrieving	g data – Data p	eparation – Explo	ratory Data analysis - build the	model-	presenting find	lings and			
building ap	plications – l	Data Mining – I	Data Warehousing – Basic St	atistical	descriptions	of Data			
DESCRIBI	NG DATA T	pes of Data – Ty	ypes of Variables -Describing I	Data wit	h Tables and	Graphs –			
Describing l	Data with Avera	ges – Describing V	Variability – Normal Distribution	s and St	andard (z) Scor	es			
Outcome 1	To list the ke	concepts in data	science			K1,K2			
	1		UNIT II						
Objective2	To describe th	e relationship bet	ween data science and statistics						
Introduction	n to Data Ana	ytics - Data Anal	ytics Overview - Importance of	Data A	nalytics - Type	s of Data			
Analytics - I	Descriptive Ana	ytics - Diagnostic	Analytics- Predictive Analytics	-Prescri	ptive Analytics	- Benefits			
of Data An	alytics -Data V	isualization for I	Decision Making, Measure Of	central	tendency, Me	asures of			
Dispersion -	Graphical Tec	hniques, Skewnes	s& Kurtosis, Box Plot - Descr	ptive S	tats - Sampling	g Funnel,			
Sampling Va	ariation, Central	Limit Theorem, C	onfidence interval						
Outcome 2	To understar	d the statistics an	id machine learning concepts th	at are	vital for data	K2			
	UNIT III								
Objective 3 To describe the classifications and characteristics of data									
DESCRIBI	L NG RELATIO	NSHIPS Correlat	ion –Scatter plots –correlation c	pefficie	nt for quantitati	ve data –			
computation	al formula for c	orrelation coefficie	ent – Regression –regression line	–least	squares regress	ion line –			
Standard err	or of estimate –	interpretation of r2	2 –multiple regression equations -	-regress	ion towards the	mean			
	T. 1. 4.6 4	1		0		LZ2			
Outcome 3	1 o identify t	ne relationships b	etween data and describe it			KJ			
Obiostino 4	To loom Drith	m anda ta statistia	UNIT IV						
Objective 4		DI COUE LO STATISTIC	NCLINC Paging of Numpy arr	NG AGO	ragetions com	nutations			
	ADRAKIES F	ske booleen logic	foncy indexing structured	ys –agg	Dete moninulo	tion with			
Pandas - das	ta indexing and	selection - operat	ing on data – missing data – Hi	erarchic	Data mampula al indexing – c	ombining			
datasets – ao	a modeling and a	sciection = operation = oper	oles		ar mucking – c	omonning			
Outcome 4	To produce I	vthon code to star	tistically analyze a dataset			K6			
	10 produce 1	ython coue to sta	INIT V			IX0			
Objective 5	To list the vi	ualization tools o	f Python						
DATA VISI		Importing Matple	otlib – Line plots – Scatter plots -	- visuali	zing errors – de	ensity and			
contour plot	s – Histogram	= legends $=$ col	lors = subplots = text and anno	tation -	- customization	n = three			
dimensional	plotting – Geog	raphic Data with E	Basemap – Visualization with Sea	born.	Customization	in three			
Outcomo 5	To avitically	avaluata data x	visualizations based on their	docian	and use for	V5			
Outcome 5	communicati	evaluate uata v	oto	uesign	and use for	КJ			
Suggested Da	Communicating stories if one data.								
Allen B Do	wney "Think !	tats: Exploratory I	Data Analysis in Python" Green	Tea Pres	s 2014				
David Ciele	n Arno D R N	evsman, and Moh	amed Ali, "Introducing Data Sci	ence" λ	anning Publics	ations			
2016 (Unit	2016 (Unit I)								
Robert S. W	Robert S. Witte and John S. Witte, "Statistics", Eleventh Edition, Wiley Publications 2017 (Units II and III)								
Jake Vande	r Plas, "Python	Data Science Hand	book", O'Reilly, 2016. (Units IV	and V)		,			

Online Resources:

https://www.coursesidekick.com/statistics/study-guides/boundless-statistics

https://open.maricopa.edu/psy230mm/chapter/chapter-6-z-scores/

https://www.gee	eksforgeeks.org/pyt	hon			
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			Co	ourse designed by:	Dr.G. Shanthi

Course Outcome VS Programme Outcomes

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO										
CO1	S(3)	M(2)	M(2)	M(2)	M(2)	L(1)	S(3)	L(1)	L(1)	L(1)
CO2	M(2)	M(2)	S(3)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)	M(2)
CO3	M(2)	M(2)	M(2)	L(1)	L(1)	M(2)	M(2)	L(1)	L(1)	L(1)
CO4	M(2)	M(2)	M(2)	L(1)	M(2)	L(1)	S(3)	M(2)	L(1)	L(1)
CO5	S(3)	M(2)	L(1)	L(1)	L(1)	L(1)	S(3)	M(2)	L(1)	L(1)
W. AV	2.4	2	2	1.4	1.4	1.4	2.6	1.6	1.2	1.2

S – Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	S(3)	S(3)	M(2)
CO3	S(3)	M(2)	L(1)	M(2)	M(2)
CO4	M(2)	S(3)	L(1)	L(1)	L(1)
CO5	M(2)	M(2)	L(1)	L(1)	L(1)
W. AV	2.4	2.4	1.6	1.8	1.6

S –Strong (3), M-Medium (2), L- Low (1)

			SEMESTER I		1	,			
Core: 2	Co	urse code	RELATIONAL DATABASE	Т	Credits: 4	Hou	rs: 4		
	5	557102	MANAGEMENT SYSTEM						
			Unit – I						
Objective 1		To underst	and the fundamentals of data models						
Data base S	System	Applications	s, data base System VS file System - View	w of	Data – Data A	bstrac	tion –		
Instances ar	nd Sch	emas – data	Models - the ER Model - Relational Mo	del –	Other Models	– Da	tabase		
Languages	– DD	L – DML	- database Access for applications Pro-	grams	s – data base	User	rs and		
Administrator - Transaction Management - data base System Structure - Storage Manager - the Query									
Processor. History of Data base Systems - Data base design and ER diagrams - Beyond ER Design Entities,									
Attributes and Entity sets									
Outcome 1		Compile an	understanding of data models, data a	bstra	ction, and the	ER	K2		
		model in da	tabase systems.						
			Unit II						
Objective 2		To make a	study of SQL and relational database des	ign					
Introduction	to the	Relational N	Model – Integrity Constraint Over relations	– Enf	forcing Integrity	cons	traints		
– Querying	- Querying relational data - Logical data base Design - Introduction to Views - Destroying / altering								
Tables and Views. Relational Algebra – Selection and projection set operations – renaming – Joins –									
Division - Examples of Algebra overviews - Relational calculus - Tuple relational Calculus - Domain									
relational ca	relational calculus – Expressive Power of Algebra and calculus								
Outcome 2		Design logi	ical structures using relational algebra a	and S	QL queries, v	vhile	K3		
		maintainin	g data integ <mark>rity.</mark>						
			Unit III						
Objective 3		To know a	bout data <mark>st</mark> orag <mark>e</mark> tec <mark>hniques</mark> an <mark>d</mark> query p	roces	sing.				
Form of E	Basic S	SQL Query	– Exampl <mark>e</mark> s of Basic SQL Qu <mark>er</mark> ies – In	troduc	ction to Nested	d Que	eries –		
Correlated	Neste	d Queries S	et – Comp <mark>arison Oper</mark> ators – Aggregativ	e Op	erators – NUL	LL va	lues –		
Compariso	n using	g Null values	- Logical connectivity's - AND, OR and N	OT –	Impact on SQI	L Con	structs		
– Outer Jo	ins – I	Disallowing 1	NULL values – Complex Integrity Constra	ints ir	n SQL Triggers	and	Active		
Data bases	. Schei	na refinemer	t – Problems Caused by redundancy – Deco	ompos	sitions – Proble	m rela	ated to		
decomposit	tion - 1	reasoning abo	out FDS – FIRST, SECOND, THIRD Norm	al for	ms – BCNF – I	Lossle	ss join		
Decomposi	ition –	Dependency	y preserving Decomposition – Schema ref	ineme	ent in Data bas	se De	sign –		
Multi value	ed Dep	endencies – l	FORTH Normal Form.						
Outcome 3		Evaluate S	QL queries, integrity constraints, and nor	maliz	zation techniqu	ies	K5		
		for efficien	t database design.						
		1	Unit IV						
Objectiv	e 4	To impart	knowledge in transaction processing, co	oncur	rency control	techi	niques		
		and Extern	al storage						
Transaction	Conce	ept- Transac	tion State- Implementation of Atomicity	and 1	Durability – C	oncur	rent –		
Executions	– Seri	alizability- R	Recoverability – Implementation of Isolation	on –	Testing for Se	rializa	bility-		
Lock –Base	d Proto	ocols – Time	stamp Based Protocols- Validation- Based I	Protoc	cols – Multiple	Granu	ilarity.		
Recovery an	nd Ato	omicity – Lo	g – Based Recovery – Recovery with Co	oncuri	rent Transactio	ns –	Butter		
Managemen	it – Fa	alure with l	oss of non-volatile storage-Advance Reco	overy	systems- Rem	ote B	lackup		
systems.									
Outcome	e 4	Implement	transaction management strategies and	recov	ery mechanisn	ns to	K3		
		ensure data	a consistency.						

		Unit	V						
Objective 5	To know basic datab	oase storage st	tructures and acc	ess techniques: fi	le and page				
	Organizations, index	king methods	including B tree,	and hashing.					
Data on External	Storage - File Organ	ization and In	dexing - Cluster	Indexes, Primary	and Secondary				
Indexes - Index data Structures - Hash Based Indexing - Tree base Indexing - Comparison of File									
Organizations – Indexes and Performance Tuning- Intuitions for tree Indexes – Indexed Sequential Access									
Methods (ISAM)	- B+ Trees: A Dynam	nic Index Stru	cture. Dynamic C	Content: Big Data	- Introduction –				
distributed file sys	tem – Big Data and its	importance, F	our Vs, Drivers fo	or Big data, Big da	ata analytics, and				
Big data application	ons. Algorithms using n	nap reduce, Ma	atrix-Vector Multi	plication by Map	Reduce.				
Outcome 5	Discuss advanced	database co	ncepts, includin	g indexing, big	g data K6				
	challenges, and anal	ytics applicati	ions.						
Suggested Readings:-									
Abraham Silbersch	natz, Henry F.Korth, S.	Sudarshan, 20	19, Data base Syst	em Concepts, 7th	Edition, Tata				
McGraw Hill.									
Garcia-molina, 20	13,"Database Systems -	- The Complete	e Book", 2e, Dorli	ng Kindersley Ind	ia. Raghurama				
Krishnan, Johanne	s Gehrke, 2014, Data b	ase Manageme	ent Systems,3e TA	TA McGrawHill.					
RamezElmasri, Sh	amkantB.Navathe, 201	3 "Database S	ystems, Models, L	anguage, Design a	and Application				
Programming, 6th	Edition, Pearson Educa	ation.	Rom So						
SeemaAcharya, Su	bhashiniChellappan, 2	019" Big Data	and Analytics", V	Viley Publications					
SharadMaheshwar	iRuchinjain, 2016,"Dat	tabase Manage	ment Systems: Co	mplete Practical A	Approach",				
2e, Laxmi Publicat	tions								
Online Resources	:	MAX							
https://mis.alagap	pauniversity.ac.in/siteA	dmin/dde-							
admin/uploads/2/PG M.Sc. Information%20Technology 313%2022 RDBMS CRC.pdf									
https://diblokdcma.files.wordpress.com/2009/10/springer-fundamentals-of-relational-database-management-									
systems-apr-2007.pdf									
https://www.geeksforgeeks.org/dbms/									
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create				
Course Designed by: Dr.K.Mahesh									

	Course outcome v 5 i rogi unime outcomes									
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	L(1)	L(1)	L(1)	M(2)	L(1)	L(1)	L(1)	L(1)
CO2	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	L(1)	L(1)	L(1)	L(1)
CO3	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	L(1)	L(1)	L(1)	L(1)
CO4	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	L(1)	L(1)	L(1)	L(1)
CO5	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	L(1)	L(1)	L(1)	L(1)
W. AV	3	3	1.8	1.8	1	2	1	1	1	1

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PS06
CO1	S(3)	M (2)	S(3)	L(1)	L(1)	M(2)
CO2	S(3)	M (2)	L(1)	S (3)	L(1)	M(2)
CO3	S(3)	M (2)	L(1)	L(1)	L(1)	S(3)
CO4	L(1)	L(1)	L(1)	M (2)	L(1)	S(3)
CO5	M(2)	L(1)	L(1)	S(3)	L(1)	L(1)
W.AV	2.4	1.6	1.4	2	1	2.2

S –Strong (3), M-Medium (2), L- Low (1)

SEMESTER-I									
Core: 3	Cours	se code	PYTHON PROGRAMM	ING	Т	Credit	s: 5	Hours: 5	
	557	/103							
	•		Unit I			-			
Objective 1	1 To	obtain	basic knowledge in Python						
Introdu	ction to	Python	: Introduction-Python Over	view-C	omme	nts-Ident	tifiers-	Reserved	
Keyword	s-Variable	s-Standa	d Data type-Operators -	Stateme	nts a	ind Exp	oressic	ons-String	
Operation	ns-Boolean	n Express	ions-Control Statements-Iterat	tion Sta	tement	ts-Input f	rom K	leyboard.	
Outcome 1	l Stu	udents ca	n summarize the overview o	of pytho	n		K1		
	pr	ogramm	ing concepts						
	F	_	Unit II						
Objective	2 To	develop	knowledgeoncreatingPytho	nprog	ramsv	vithcond	lition	als,loopsan	
Ŭ	df	unctions	•	1 0				· •	
Creating	g Python l	Program	s: String -String handling fun	ctions-S	String	Formatti	ng ope	erator and	
functions	s, Tuples, I	Dictionar	y, Date & Time, Modules, De	fining I	Functio	ons, Exit	functi	on, Lists:	
Introduct	tion-Built-i	in Funct	ions-User defined Functions-	-Python	Recu	ursive Fu	unction	n-Writing	
Python S	cripting.			Sec.				-	
Control	Structure	s: Input	and Output Statements, Contr	ol State	ements	- Loopi	ng wh	ile Loop,	
for Loop	, Loop Co	ontrol, C	onditional Statement-ifelse,	Differ	ence b	etween	break,	continue	
and pass.									
Outcome 2	2 Stu	udents c	an create programs using s	string]	Handl	ing and	K3		
	for	matting	functions, built-in & user d	efined	functi	ons and			
	co	ntrol stru	ictures.						
			Unit III	8					
Objective 3	3 To	de <mark>fine</mark> :	a classwithattributesandme	thods a	and to	<mark>es</mark> tablish	datał	oase	
	col	nnection	inpython						
Classes	& Object	s: Introd	uction-class Definition-creati	ng Obj	ects-O	bjects as	s a Ar	guments-	
Object a	as Return	n Values	s-Built-in Class Attributes-l	Inherita	nce-M	ethod (Overrio	ling-Data	
Encapsul	lation-Data	ı Hiding.	Python Libraries and Da	tabase	Conn	ectivity	: Rea	iding and	
Writing (CSV Files	in Pytho	n using CSV Module- Pytho	n-Datab	ase C	onnectivi	ity-Est	ablishing	
Connecti	on and Cu	rsor Obje	ect						
Outcome 3	3 Le	arners c	an build libraries and databa	ase con	nectiv	ity	K5		
			Unit IV						
Objective4	t To	gain kn	owledge about Numpy and	data r	nanip	ulation	with p	pandas	
Introduc	ction to	NumPy:	Basics of NumPy Array	-Com	putatio	on on l	NumP	y Array-	
Aggregat	tions – Bro	oadcastin	g-Comparisons, Masks and Bo	oolean l	Logic-	Sorting A	Arrays	-NumPy	
Structure	ed Array. I	Data Mai	nipulation with Pandas: Intro	oducing	Panda	a Objects	s-Data	Indexing	
and Sele	ection-Ope	erating I	Data on Pandas-Handling N	lissing	Data	Hierarch	nical	Indexing-	
Combini	ng Dataset	s-Vector	zed String Operations-Workir	ng with	Time	Series.			
Outcome 4	t Le	arners c	an acquire knowledge about	NumP	y and		K6		
	da	tabase co	onnectivity.						

		Unit	t V				
Objective 5	Todevelopvisuali	szation with	Matplotlib				
Visualization v	vith Matplotlib: S	Simple Line	Plots-Simple Sca	atter Plots-Visua	lizing Errors-		
Density and Co	ontour Plots-Histog	grams, Binni	ngs and Density	y-Customizing I	Plot Legends-		
Customizing Co	olorbars-Multiple S	ubplots-Text	and Annotation	-Three Dimensio	on Plotting in		
Matplotlib-Geog	graphic Data with B	asemap-Visu	alization with Se	aborn			
Outcome 5	Learners can desi	gn visualizat	ion using Matpl	otlib.	K6		
Suggested Readin	ngs:-						
CharlesDierb	oach,2016Introduct	tiontoCompu	terScienceusing	Python,1 st Editio	n,Wiley		
IndiaEdition							
MartinC.Bro	wn,2018Python:T	heCompleteF	Reference,1 st Edit	tion,McGrawHi	llIndia.		
ReemaThare	ja,2017PythonProg	grammingusi	ngProblemSolvi	ngApproach,1 st	Edition Oxford		
University P	ress.						
SheetalTane	ja,NaveenKumar,2	017,PythonP	Programming,1 st	Edition,Pearson	India.		
Online Resources	5:						
https://pandas.pyda	ata.org/pandas-docs	/version/1.4.4	/pandas.pdf				
https://static.realp	ython.com/python-	basics-sampl	le-chapters.pdf				
https://www.guru99.com/python-tutorials.html							
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create		
		Va	Cou	rse Designed by	: Dr.M.Vanitha		

Course Outcomes VsProgramme Outcomes

PO										
			PO	PO	PO	PO		PO	PO	PO1
CO	PO1	PO2	3	4	5	6	PO7	8	9	0
CO1	L(1)	M(2)	L(1)	L(1)	L(1)	L(1)	L(1)	L(1)	M(2)	M(2)
CO2	S(3)	S(3)	M(2)	L(1)	M(2)	L(1)	L(1)	M(2)	S(3)	M(2)
CO3	S(3)	S(3)	M(2)	L(1)	L(1)	L(1)	M(2)	L(1)	M(2)	M(2)
CO4	S(3)	S(3)	S(3)	M(2)	L(1)	L(1)	L(1)	L(1)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	S(3)	M(2)	L(1)	L(1)	L(1)	L(1)	L(1)
W.A V	2.6	2.8	2.4	1.6	1.4	1	1.2	1.2	2	1.8

S-Strong (3) M- Medium (2) L-Low (1)

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	S(3)	L(1)	L(1)
CO2	S(3)	M(2)	L(1)	L(1)	L(1)
CO3	S(3)	M(2)	S(3)	S(3)	M(2)
CO4	S(3)	L(1)	L(1)	L(1)	M(2)
CO5	S(3)	M(2)	S(3)	L(1)	M(2)
W.AV	3	1.8	2.2	1.4	1.6

Course Outcome VS Programme Specific Outcomes

S-Strong (3) M- Medium (2) L-Low (1)

		SEMESTER-I			
Core 4	Course code	DISCRETE MATHEMATICS	T	Credits: 4	Hours: 4
	557104				
		Unit I			
Objective 1	To have an u	nderstanding of the theory of inference f	or the	statement of	f calculus.
Mathematic	al Logic: Staten	nents and notation-Connectives- Normal fo	rms–	The theory of	inference
for the statem	ent calculus–Th	e predicate calculus- Inference theory and	predi	cate calculus.	1
Outcome 1	Develop Prob	lem-solving skills.			K1
	1	Unit II			
Objective2	To discuss the	e basic concepts of sets, Notation, Inclusi	on, E	quality of set	s and
	functions				
Set theory :	Sets – Basic o	concepts – Notation – Inclusion and equa	ality c	of sets – The	power set –
Relations and	d ordering – Pro	perties – relation matrix and graph of a re	lation	– Partition –	Equivalence
and compatil	bility relations	– Composition – Partial ordering – Part	ially o	ordered set -	Functions –
Definition –	Composition – 1	Inverse – Binary and n-ary operations – C	haract	teristic function	on – Hashing
function.	1				
Outcome 2	Enhance Ana	lytical skills.			K3
		Unit III			
Objective 3	To know and	understand the concept of Groups, Co-s	ets an	id Lagrange'	s theorem
	and Normal s	ubgroups.			
Algebraic st	ructures - Alg	ebraic systems: Examples and general	proper	rties – semi	groups and
monoids:Defin	nitionsandexam	oles–Homomorphismofsemigroupsandmon	oids_S	Sub semi gro	ups and sub
monoids-Gro	ups:Definitionsa	ndexamples-CosetsandLagrange'stheorem	-Nori	nalsubgroups	
-Algebraic	systems with tw	o binary operations.			
Outcome 3	Learn Algebr	aic structures.			K4
		UnitIV	1		
Objective 4	To understan	d the concept of basic graph theory notion	ons ar	nd to apply w	rith
	computer app	olications.			
Graph theory	Basic concept	s–Definitions–Paths–Reachability and com	nected	lness-Matrix	
representation	of graphs–Tree	S.			
Outcome 4	Define and re	cognize the basic concepts of graph theo	ry.		K2
		Unit V			
Objective5	Develop the p	probability distributions and mathematic	al exp	pectations.	
Finite probab	ility–Probability	distributions-Conditionalprobability-inde	pende	nce–Bayes'th	eorem-
Mathematical	expectation.				1
Outcome5	Identify the c	oncepts of finite probability.			K5
Suggested Re	adings:-				
Tremblay, J.P.,	Manohar,R.(201	17).DiscreteMathematicalStructureswithAp	plicat	ionstoCompu	terScience.N
ewYork: Mc-O	Graw Hill Book	Company. (Unit I to IV).			
References:		-44			
JudithGersting	g,L.(2003).Mathe	ematicalStructuresforComputerScience.(5 th	ed.).V	V.H.Freemana	andCompany.
(UnitV)					-th
Kolman,B., Ro	oberty Busby,C.	Sharn Cutter Ross, (2013). Discrete Mathem	natica	l Structures. (6 ed.).
Pearson Educa	ition.				
Ramasamy,V.	,(2006).Discrete	MathematicalStructureswithapplicationtoC	ombir	natorics.Unive	ersitiesPress

Online resources https://ocw.mit.edu/courses/18-310-principles-of-discrete-applied-mathematics-fall-2013/ https://www.classcentral.com/course/swayam-discrete-mathematics-5217

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create				
Course Designed by: B.Yasodara									

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	L(1)	S(3)	S(3)
CO2	S(3)	M(2)	S(3)	L(1)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)
CO4	S(3)	S(3)	L(1)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)
W.AV	3	2.8	2.4	2.4	2.8	2.8	2.8	2.6	2.8	2.8

Course Outcome VS Programme Outcomes

S-Strong(3),M-Medium(2),L-Low(1)

ALAGAPPA UNIVERSIT

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	L(1)	S(3)	S(3)	M(2)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	M(2)	S (3)	S(3)	L(1)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	3	2.2	2.8	3	2.4

S-Strong(3),M-Medium(2),L-Low(1)

		SEI	MESTER I						
Core: 5	Course code 557105	LAB I: DAT	A SCIENCE LAB	P	Credits:2	Hours:4			
Objectives:	To under	stand the python l	ibraries for data sci	ience					
J	• To under	stand the basic Sta	atistical and Probab	oility mea	sures for data	science.			
	• To learn	lescriptive analyt	ics on the benchma	rk data se	ets.				
	• To apply	correlation and re	gression analytics	on standa	rd data sets.				
	To preser	t and interpret da	ta using visualizati	on packa	ges in Python				
LIST OF EXPERIMENTS									
1. Wor	king with dictionari	es							
2. Wor	king with random								
3. Wor	king with Numpy ar	rays							
4. Wor	king with Pandas da	ta frames							
5. Wor	king with CSV data	set							
6. Wor	king with web craw	ing							
7. Wor	king with datetime of	lass							
8. Deve	elop python program	for Basic plots u	sing Matplotlib						
9. Deve	elop python program	for Frequency d	istributions						
10. Deve	elop python progran	for Variability	See 3						
11. Deve	elop python progran	for Averages							
12. Deve	elop python program	for Normal Curv	ves						
13. Deve	elop python program	for Correlation a	ind scatter plots						
14. Deve	elop python program	for Correlation of	oefficient						
15. Deve	elop python program	for Simple Line	ar Regression						
Outcomes:	• COI: M	ake use of the py	hon libraries for da	ita scienc	e	1.			
	• CO2: M	ake use of the bas	sic Statistical and P	robability	y measures for	r data science.			
	• CO3: Pe	erform descriptive	analytics on the be	enchmark	data sets.				
	• CO4: Pe	erform correlation	and regression and	lytics on	standard data	sets			
0.1	• CO5: Pi	esent and interpre	t data using visual	zation pa	ickages in Pyt	$\frac{1}{10000000000000000000000000000000000$			
Unline	$\frac{\text{https://s}}{0/201-1}$	nanmugha.edu.in/	pai/dept/aids/Fund	amentals	<u>%02U0I%02UDa</u>	ata%20science			
Resources	<u>~020Lat</u>	<u>%20manual.pul</u>	la anno ant/6620002	14/2226) formulations	of data			
	nups://v	ww.scridd.com/c	10cument/0020993	14/083302	2-10undations	<u>-01-0ata-</u>			
	Science-iao-manual https://www.conformerla.com/data_science_for_damaged_a								
		$\frac{WW.gccKSlorgee}{K3_Annly}$	KA_A nabyza		aluata	K6_Croato			
KI-Rememb	er K2-Understand	пэ-Арріу	л <i>4-Апшу</i> ге			AU-Create			
				Course	designed by:	Dr. G. Shanthi			

Course Outcome VS Programme Outcomes

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)	M(2)	M(2)	L(1)	-	-	-	L(1)
CO2	M(2)	M(2)	S(3)	M(2)	L(1)	M(2)	-	-	L(1)	M(2)
CO3	M(2)	S(3)	M(2)	L(1)	L(1)	M(2)	M(2)	L(1)	L(1)	L(1)
CO4	M(2)	M(2)	M(2)	L(1)	M(2)	L(1)	-	M(2)	L(1)	L(1)
C05	S(3)	M(2)	L(1)	L(1)	L(1)	L(1)	-	M(2)	L(1)	L(1)
W. AV	2.4	2.2	2	1.4	1.4	1	2	1.7	1	1.2

S-Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
СО		:1111 1160	5 CO O dia		
CO1	S(3)	M(2)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	S(3)	S(3)	M(2)
CO3	S(3)	M(2)	L(1)	M(2)	M(2)
CO4	M(2)	M(2)	L(1)	L(1)	L(1)
CO5	M(2)	M(2)	L(1)	L(1)	L(1)
W. AV	2.4	2	1.6	1.8	1.6

S-Strong (3), **M-Medium** (2), **L**- Low (1)

	Semester-I									
Core: 6	Course code	LAB II: PYTHON	Credits:2	Hours:4						
	557106	PROGRAMMING LAB								
Objectives of	This course gives pra	ctical experience in Python basics	s, Object Orie	ented						
the Course	programming like C	asses, Inheritance, and Polymorp	hism, GUI A _l	pplications						
	and Database connect	etion.								
Course	1. Python Basic	programs								
Outline	2. Control Structures									
	3. Lists									
	4. Functions and	1 Recursions								
	5. Modules									
	6. String Proces	sing								
	7. Dictionaries a	and Sets								
	8. Classes and C	Dbjects								
	9. Polymorphisi	n								
	10. Inheritance									
	11. CSV Module									
	12. Working with	n Database								
	13. Data Manipu	lation with Pandas								
	14. Visualization	with Matplotlib								
Suggested Rea	dings:									
Wesley J. Chu	n, (2007), "Core Pythe	on Programming", Pearson Educa	tion, Second I	Edition –						
MarkLu	utz,(2013),"LearningP	ythonPowerfulObjectOrientedPro	ogramming",O	D"reilly						
Media,	5 th Edition.									
Timoth	yA.Budd <mark>,(20</mark> 11),"Exp	loringPython",TataMCGrawHilll	EducationPriv	ateLimited,						
First Ec	lition.									
AllenD	owney,JeffreyElkner,	ChrisMeyers,(2012),"Howtothink	likeacompute	erscientist:						
Learnin	ig with Python"		·	1 St - 1						
Charles	s Dierbach, 2016 Intr	oduction to Computer Science u	ising Python,	¹ st Edition,						
Wiley	India Edition.			TT'11T 1						
Martin	C.Brown,2018 <i>Pythor</i>	n: The Complete Reference, 1 st Edit	tion,McGraw	'Hillind						
ia.Reer	na I hareja, 201 / Pytho	nProgrammingusingProblemSc	olvingApproa	<i>ch</i> ,1 ⁻¹ E						
ditionC	DXIOrdUniversityPres	S. 2017 Distribution Disconstruction 1^{st}	T 1.4	T1'						
SheetalTaneja,NaveenKumar,2017, <i>PythonProgramming</i> ,1 ^{ex} Edition,PearsonIndia.										
Unine Resour	rces:	ma/den extra extra (CSE /m eterric)	/D10/2							
https://www.rgmcet.edu.in/assets/img/departments/CSE/materials/R19/2-										
<u>I/Python%2ULab.pdf</u> https://www.geeksforgeeks.org/python_programming_evenplos/										
https://www.geekstorgeeks.org/python-programming-examples/										
K1-Remember	K2-Understand	K3-Annly K4-Analyzo K5.	-Evaluate	K6-Create						
III Itemember	112 Unuci stana	<u>Γουνεο Πο</u>	signed hv· D	r M Vanitha						
			ngneu by. Di	••••••••••••••••••••••••••••••••••••••						

Course Outcomes VsProgramme Outcomes

PO CO	PO1	PO2	PO 3	PO 4	PO 5	PO 6	PO7	PO 8	PO 9	PO1 0
CO1	1	2	1	1	1	1	1	1	2	2
CO2	3	3	2	1	2	1	1	2	3	2
CO3	3	3	2	1	1	1	2	1	2	2
CO4	3	3	3	2	1	1	1	1	2	2
CO5	3	3	3	3	2	1	1	1	1	1
W.A V	2.6	2.8	2.4	1.6	1.4	1	1.2	1.2	2	1.8

Strong (3) M- Medium (2) L-Low (1)

Course Outcome VS Programme Specific Outcomes

ALAGAPPA UNIVERSITY

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5	
C01	3	2	3	1	1	
CO2	3	2	1	1	1	
CO3	3	2	3	3	2	
CO4	3	1	1	1	2	
CO5	3	2	3	1	2	
W.AV	3	1.8	2.2	1.4	1.6	
		- Common -		(-) · · ·		

S-Strong (3) M- Medium (2) L-Low (1)

		SEMESTER - I							
DSE-1	Course code 557551	CLOUD COMPUTING	Т	Credits: 3	Hours: 3				
	I	Unit I	1		I				
Objectives	Objectives To understand the concept of cloud and utility computing.								
Introduction	on to Cloud C	Computing: Definition, Characteristics, C	ompone	ents, Cloud pr	rovider, SAAS,				
PAAS, IA	AS and Other	rs, Organizational scenarios of clouds,	Adminis	stering & Mo	onitoring cloud				
services, be	enefits and lim	itations, Deploy application over cloud,	Compa	rison among	SAAS, PAAS,				
IAAS Clo	ud computing	platforms: Infrastructure as a Servi	ce: Vir	tual Machin	es – Layered				
Architectur	e-Life Cycle	– VM Provisioning Process – Prov	isioning	g and Migra	ation Services.				
Managemen	nt of Virtual M	achines Infrastructure – Scheduling Techr	niques. (Cluster as a se	ervice – RVWS				
Design -1	Logical Design	Cloud Storage - Amazon EC2, Platfor	m as Se	ervice: Googl	e App Engine,				
Microsoft A	Azure, Utility C	omputing, Elastic Computing.			1/1 1/2				
Outcomes	Identify the a	architecture, infrastructure and delive	ry mod	leis of cloud	K1,K2				
	computing.	Unit II							
Objectives	To understan	d the various technologies in cloud							
Introductio	on to Cloud I	echnologies: Study of Hypervisors Comp	are SO	AP and RESI	Web services,				
AJAX and	mashups-web	services: SOAP and REST, SOAP versus	S KESI	, AJAX: asyr	ichronous 'rich'				
interfaces,	Mashups: user	interface services Virtualization Techno	blogy:	virtual machi	ne technology,				
virtualizatio	on applications	in enterprises, Pitfalls of Virtualization	Multite	nant software	e: Multi-entity				
support, N	lulti-schema a	pproach, Multitenance using cloud dat	a store	s, Data acce	ess control for				
enterprise a	pplications.				TT 4				
Outcomes	Articulate the	main concepts, key technologies, stren	gths an	d limitations	K4				
	or cloud comp	Unit III							
Objectives	To Understa	ad the data in the Cloud	-						
Data in th	e Cloud: Rela	tional databases. Cloud file systems: GE	S and F	IDFS BigTal	le HBase and				
Dynamo M	fan-Reduce and	extensions: Parallel computing. The mai	o-Reduc	e model Par	allel efficiency				
of Man-Re	duce Relation	al operations using Man-Reduce Enter	prise ba	tch processi	ng using Man-				
Reduce	Introduction to	cloud development Example/Applicat	ion of	Man reduce	Features and				
comparison	is among GFS.	HDFS etc. Man-Reduce model	1011 01	inup reduce,	, i cuturos una				
Outcomes	To familiarize	with the Relational databases and Clou	ıd file s	vstems	K2				
				5.000000					
Objectives	To Understan	d the Fundamentals of Cloud Security.							
Cloud Sec	urity Fundam	entals: Vulnerability assessment tool for c	loud, P	rivacy and Se	curity in cloud				
Cloud computing security architecture: Architectural Considerations- General Issues. Trusted Cloud									
computing, Secure Execution Environments and Communications. Micro-architectures: Identity									
Manageme	nt and Access	control Identity management, Access of	control,	Autonomic	Security Cloud				
computing	security chall	enges: Virtualization security managen	nent vi	rtual threats,	VM Security				
Recommen	dations, VM-	Specific Security techniques, Secur	e Exe	cution Envi	ronments and				
Communic	ations in cloud.	· •							
Outcomes	Explain the co	ore issues of cloud computing such as so	ecurity,	privacy and	K2				
	interoperabili	ty.							

	Unit V							
Objectives	To Understand the various issues in Cloud							
Issues in	Issues in Cloud Computing: Implementing real time application over cloud platform, Issues in							
Intercloud	environments, QOS Issues in Cloud, Dependability, data migration, stream	ning in Cloud.						
Quality of	Service (QoS) monitoring in a Cloud computing environment. Cloud Middl	eware. Mobile						
Cloud Con	nputing. Inter Cloud issues. A grid of clouds, Sky computing, load balan	icing, resource						
optimizatio	n, resource dynamic reconfiguration, Monitoring in Cloud'. Cloud comput	ting platforms,						
Installing c	loud platforms and performance evaluation Features and functions of cloud p	latforms: Xen						
Cloud Platf	form, Eucalyptus, Open Nebula, Nimbus, TPlatform, Apache Virtual Computi	ng Lab (VCL),						
Enomaly E	lastic Computing Platform Applications: Best Practices in Architecting cloud	applications in						
the AWS c	loud - Massively multiplayer online Game hosting on cloud Resources - Bu	uilding content						
delivery Ne	etworks using clouds – Resource cloud Mashups.							
Outcomes	Choose the appropriate technologies, algorithms and approaches for	K5						
	the related issues.							
Suggested Re	eadings:-							
Naresh Kum	ar Sehgal Pramod Chandra P. Bhatt, 2018, "Cloud Computing: Concepts	and Practices,						
Springer", 1st	ed.							
Judith Hurwitz, R.Bloor, M.Kanfman, F.Halper, 2012, "Cloud Computing for Dummies", (Wiley India								
Edition).								

Bible Barrie Sosinsky, 2013, "Cloud Computing", Wiley India.

GautamShroff, Cambridge, 2013, "Enterprise Cloud Computing".

Ronald Krutz and Russell Dean Vines, 2014, "Cloud Security ", Wiley-India,.

RajkumarBuyya, James Broberg, and AndrzejGoscinski, 2011, "Cloud Computing Principles and Paradigms", John Wiley and Sons, Inc,

George Reese, 2009, "Cloud Application Architectures, First Edition, O'Reilly Media, Inc.

Online Resources:

https://www.kth.se/social/files/554fa451f276544829be2e5e/9-cloud-computing.pdf https://www.cl.cam.ac.uk/teaching/2122/CC/lectures/Introduction22.pdf

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			0	ourse Designed b	y:Dr.N.Geetha

Course Outcome Vs. Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M (2)	-	M (2)	M (2)	M (2)					
CO2	S (3)	S(3)	S(3)	S(3)	S (3)	S (3)	-	S(3)	S(3)	S (3)
CO3	M (2)	S(3)	-	M (2)	M (2)	M (2)				
CO4	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	-	S(3)	S(3)	S(3)
CO5	S (3)	-	S (3)	S (3)	S(3)					
W.AV.	2.6	2.6	2.6	2.6	2.6	2.8	-	2.6	2.6	2.6

S-Strong(3), M-Medium(2), L-Low(1)

Course Outcome Vs. Programme Specific Outcomes

		1000	A CONTRACTOR OF A		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	S(3)	M(2)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV.	3	3	3	2.8	3

S-Strong(3), M-Medium(2), L-Low(1)

			SEMESTER-I							
DSE-1	Cours 557	e Code /552	ADVANCED JAVAPROGRAMMING	Т	Credit	s: 3	Hours: 3			
UNITI										
Objectiv	Objective I To provide an overview of Object Oriented Programming concepts and									
Java Programming Language										
Fundam	entals	of Obj	ect-Oriented Programming: - Basic cond	cepts	of OOI	' –Be	nefits –			
Applicati	ons Jav	a Evolu	ition: Features – how java differs from C ar	nd C-	⊦+ - java	and i	nternet-			
java supp	ort sys	stem – j	ava environment - Overview of Java Lang	guage	e –consta	ants v	ariables			
and data	types- (Operator	rs and Expressions - Decision Making and B	rancl	ning – Lo	poping	5			
Outcom	e 1	Studen	ts can summarize Object Oriented Progra	mmi	ing	K1				
			UNIT II		·					
Objectiv	e 2	To crea	te programs using classes, methods, Arra	ys St	trings, v	ectors	1,			
		Inherit	ance, Interface and packages							
Classes,	Object	s and N	Iethods: - Defining a class -fields -method	s –cr	eating of	ojects	- accessing			
class me	mbers ·	– consti	ructors – methods overloading –static men	nbers	– nesti	ng of	methods –			
Inheritan	ce –ove	erriding	methods -final variables-classes - methods	s- Ar	rays, Str	ings a	and Vectors			
:One di	mensio	nal A	rrays –creating of array – Twodime	nsio	nalarrays	-string	gs-vectors-			
Wrapper	classes-	-Enume	ratedTypes- Packages: Defining interfac	ce –	Extendi	ng in	iterfaces –			
Implemen	nting Ir	terfaces	ALAGAPPA UNIVERSITY			C				
Outcom	e 2	Learn	ers can create programs using Arrays, inh	nerita	ance,	ŀ	X6			
		interf	ices and Packages							
Objectiv	e 3	To buil	d Java applications using JDBC							
JDBC O	vervie	w - Co	nnection Class –Meta Data Function –SQI	L Ex	ception-	SQL	warning -			
Statemen	t –Rest	ılt Set -	Other JDBC Classes.		, î	-	_			
Outcome	3	Learne	rs can construct Java applications using J	DBC			K6			
			Unit IV							
Objectiv	e 4	To cre	eate applications using RMI							
Part B. Ar	nswer A	LL Que	estions(4X5=20)							
Outcom	Outcome 4 Students can design applications to remotely invoke services K3						К3			
			Unit V							
Objectiv	e 5	To dev	elop application programs using AWT and	swin	g packa	ges				
JApplet	- Butto	on - Co	mbo - Trees - Tables – Panes. Introducti	on to	o AWT	– Wo	orking with			
windows	, Graph	nics, Tex	t using AWT Controls and Layout managers	s.						
Outcom	e 5	Studen	ts can build interactive applications using	AW	Tand		K6			
		swing								
Suggested Readings:-

Balagurusamy.E,2011,5e,TataMcGraw-Hill.

HerbertSchildt,2017,"JavaProgrammingwithJava-TheCompleteReference",9E,McGraw-Hill. Krishnamoorthy.RandPrabhu.S,2004,InternetandJavaProgramming,NewAgeInternationalPubli shers

WigglesworthandWandra,2011,"JavaProgrammingAdvanceTopics",3e,Cengage.

Online Resource	s:					-
https://gfgc.kar.	nic.in/sirmv-scienc	e/GenericDo	cHandler/138-a2	2973dc6-c024-4d	81-be6d-	
5c3344f232ce.p	odf					
https://www.iitl	<u>k.ac.in/esc101/shar</u>	e/downloads/	javanotes5.pdf			
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create	-
	·	<u>.</u>	Cou	irse Designed by	: Dr.M.Vanitha	l

Course Outcomes VsProgramme Outcomes

РО										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO										
CO1	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	L(1)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	M(2)	L(1)	L(1)	L(1)	M(2)	M(2)
CO3	S(3)	M(2)	S(3)	M(2)	M(2)	L(1)	L(1)	L(1)	M(2)	M(2)
CO4	S(3)	M(2)	S(3)	M(2)	L(1)	L(1)	L(1)	L(1)	L(1)	S(3)
CO5	S(3)	M(2)	S(3)	M(2)	L(1)	M (2)	L(1)	L(1)	L(1)	M(2)
W.AV	3	2.4	3	2	1.6	1.6	1.2	1	1.6	2

S-Strong (3) M- Medium (2) L-Low (1)

Course Outcome VS Programme Specific Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	S(3)	L(1)	L(1)
CO2	S(3)	M(2)	L(1)	L(1)	M(2)
CO3	S(3)	M(2)	S(3)	S(3)	L(1)
CO4	S(3)	L(1)	L(1)	L(1)	L(1)
CO5	S(3)	M(2)	S(3)	L(1)	L(1)
W.AV	3	1.8	2.2	1.4	1.2

S-Strong (3) M- Medium (2) L-Low (1)

		SEMESTER-I							
DSE-1	Course Code 557553	DIGITAL IMAGE PROCESSING	T	Credits:3	Hours:3				
		Unit I							
Objective 1 Toprovidethefundamentaltechniquesandalgorithmsusedforacquiring,pro									
cessingandextractingusefulinformationfromdigitalimages.									
DIGITAL IMAGE FUNDAMENTALS: Element of Digital Image Processing-									
ElementsofVisualPerception-PsychoVisualModelBrightness-Contrast-Hue-Saturation,									
Machband	Machband Effect, Color Image Fundamentals – RBG – His Models, Image Sampling,								
Quantizati	on, Dither, Ma	trix Theory Result, Block Matrices and Ki	ronecke	r Products.					
Outcome 1	Students	can summarize the fundamentals of digita	l image	s I	Κ2				
		UNITII							
Objective 2	To introd	uce the methods for images ampling and	d quan	tization					
IMAGE 7	FRANSFORM	IS: 2-D Orthogonal And Unitary Transfor	ms,1-D	And 2-D:	Discrete				
Fourier Ti	ransformation,	Cosine, Sine, Walsh, Hadamard, Slant, K	Kurhune	en-Loeve, S	Singular				
Value Dec	compositionTra	ansforms.							
Outcome 2	Learners	can understand 2D transformation concep	ots	ŀ	K2				
	1	Unit III							
Objective 3	To under	stand about image transforms and imag	e enha	ncement					
Threshold Specificat Direction	ing Density ion, Spatial Op Smoothing, Mo	Slicing, Histogram Equalization, eration-Spatial Averaging, Low Pass, Hig edium Filtering and Homomorphic Filterin	Mod hpass E g	ification Band Pass F	and iltering,				
Outcome 3	Students	can acquire knowledge about enhancing th	ne imag	jes	K3				
	and apply	it.							
	— •	Unit IV	• •						
Objective 4	lo acqui	re knowledge about restoration and prin	ciples						
IMAGE RI Wiener Filt Interpolation	tering, Geom , Constrained L	N: Image Observation Model, Sources of etric Mean Filter, Non Linear Filter, east Squares Restoration.	Smoo	thing Splin	erse and nes and				
Outcome 4	Students images	can cultivate the knowledge about restor:	ation of		K5				
		Unit V							
Objective 5	To introd	uce Image compression and video comp	ression	standard	s.				
IMAGE	DATA COM	PRESSION: Image Data Rates, Pixel	Coding	g, Need F	or Data				
Compression. Error Free Compression: Variable Length Coding, Bit Plane Coding, LZW									
Coding, Lossy Compression: Transform Coding, Wavelet Coding, Compression Standards:									
Binary Image Compression Standard, Still Image Compression Standards, Video Compression Standards.									
Outcome 5	Learn Comp	ers can understand and gain knowledge ab ression	oout Im	lage	K4				

Suggested Readings	:-								
AnilK.Jain,201	AnilK.Jain,2015FundamentalsofDigitalImageProcessing,Pearson.								
Jayaraman.S,Ve	Jayaraman.S, Veerakumar. Tand Esakkirajan.S, 2009, Digital Image Processing, 1eMcGrawHi								
ll Educatio	on.								
Khalidsayood,2	018.Introductiont	oDataComp	ression,5thEdit	ionpublishedby	MorganKaufm				
ann.									
RafaelGonzalez	z.CandRichardWo	odsE.2014, <i>L</i>	DigitalImagePr	ocessing,3e,Pea	rson.				
Online Resources:									
https://dl.icdst.org/pdf	s/files4/01c56e081	202b62bd7d3	3b4f8545775fb.	<u>pdf</u>					
https://library.uoh.edu	.iq/admin/ebooks/7	5289-bernd-j	ahnedigital-i	mage-processing	g-5th-ed.pdf				
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create				
Course Designed by: Dr.M.Vanitha									

Course Outcomes VsProgramme Outcomes

PO										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO \										
CO1	L(1)	M(2)	M(2)	L(1)	L(1)	L(1)	M(2)	M(2)	M(2)	L(1)
CO2	M(2)	M(2)	L(1)	M(2)	L(1)	M(2)	M(2)	S(3)	M(2)	L(1)
CO3	S(3)	S(3)	L(1)	M(2)	L(1)	L(1)	M(2)	M(2)	M(2)	L(1)
CO4	M(2)	M(2)	L(1)	M(2)	M(2)	L(1)	L(1)	M(2)	M(2)	M(2)
CO5	L(1)	M(2)	L(1)	L(1)	M(2)	L(1)	L(1)	M(2)	M(2)	M(2)
W.AV	1.8	2.2	1.2	1.6	1.4	1.2	1.6	2.2	2	1.4

S-Strong (3) M- Medium (2) L-Low (1)

Course Outcome VS Programme Specific Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	S(3)	L(1)	L(1)
CO2	S(3)	M(2)	L(1)	L(1)	M(2)
CO3	S(3)	M(2)	S(3)	S(3)	L(1)
CO4	S(3)	L(1)	L(1)	L(1)	L(1)
CO5	S(3)	M(2)	S(3)	L(1)	L(1)
W.AV	3	1.8	2.2	1.4	1.2

S-Strong (3) M- Medium (2) L-Low (1)

SEMESTER- II									
Core: 7 Course code DATA MINING AND T Credits:4 I	Hours:4								
557201 WAREHOUSING									
Unit I									
Objective 1To study OLAP operations, OLAP engine in Data Warehousing									
Data Warehousing Introduction – Definition-Multi Dimensional Data Model- O	DLAP								
operations-Warehouse Schema - Data Modeling tools - Fact tables and dimensions -									
Warehouse Architecture -Warehouse server Meta Data - OLAP Engine-Backend Process:									
Data Extraction, cleaning, Transformation and loading -Data warehousing case studies:	Data								
warehousing in Government, Tourism, Industry and Genomics data.									
Outcome 1 Able to solve data mining case studies using real-world									
datasets.	K1								
Unit II									
Objective 2 To study the Data mining techniques like association rule, cluste	ering,								
classification, web mining, temporal and sequential data mining.									
Data Mining fundamentals - Definition – KDD vs. Data Mining- KDD steps: Data selec	ction,								
cleaning, Integration, Transformation, Reduction and Enrichment-DM Techniques –Issues	es and								
Challenges in Data Mining-application areas: types of data – Data Mining Applicat	tions-								
current trends affecting data mining – Data Preprocessing - Exploration: Summary statist	tics –								
Visualization	1/0								
Outcome 2 Able to do the preprocessing activities on datamining	K2								
applications.									
Objective 3 To study the Data mining techniques like association rule algorithm	16								
objective 5 To study the Data mining teeningues like association rule algorithm	15.								
Association rules: Introduction – Methods to discover association rules – Apriori algorit	thm -								
Partition Algorithm – Pincer search algorithm – Dynamic Item set Counting algorithm –	– FP-								
Tree Growth algorithm. Classification: Decision Tree classification – Bayesian Classification	t10n –								
Classification by Back Propagation.	1/2								
Outcome 5 Understand Association rule algorithms like Apriori, Partition	ĸj								
and Fincer Search algorithm									
Objective 4 To study the Data mining techniques like clustering and classification	on								
Clustering Techniques: Introduction – Clustering Paradigms – Partitioning Algorithm	ns: K								
means & K Medoid algorithms - CLARA - CLARANS - Hierarchical clustering - DBS	SCAN								
- BIRCH - Categorical Clustering algorithms - STIRR - ROCK - CACTUS. Introduction	ion to								
machine learning - Supervised learning - Unsupervised learning - Machine learning and	d data								
mining. Neural Networks: Introduction – Use of NN – Working of NN - Genetic Algorithm:									
mining. Neural Networks: Introduction – Use of NN – Working of NN - Genetic Algorithm:									
Introduction –Data Mining using GA.									

	Unit V								
Objective 5	To study the D	ata mining	techniques like	e web mining, t	empora	al and			
	sequential data	mining							
Web Mining an	d Big Data: Intro	duction –Web	o content mining	- Web structure	mining	-Web			
usage mining –1	Text mining -Text	clustering – Y	Visual data mini	ng – Various mir	ning too	ols and			
techniques for in	nplementation usin	ng weka, Rap	oidminer and Ma	atlab. Introduction	n to Big	g Data			
Analytics – Dat	a Analytics – Ana	alytics Termi	nology –Types	of Analytics – A	Analytic	s Life			
Cycle - Data Sto	re.								
Outcome 5	Outcome 5 Understand the data mining techniques, classification and web K4								
	mining								
Suggested Read	ings:								
ArunK.Pu	jari, 2016, <i>Data M</i>	lining Techni	ques, 4 th Edition	, Orient Blackswa	an Publi	ications			
Parteek Bl	natia, 2019, Data M	lining and Da	ata Warehousing	: Principles and P	Practical	l			
Technique	s, Cambridge Univ	versity Press							
Jiawei Hai	n, Jian Pei and Mic	helineKambe	er, 2016, Data M	ining: Concepts d	and				
Technique	s, 3e, Morgan Kau	fmann.							
Lakshmi F	Prasad.Y, 2016, <i>Big</i>	g Data Analyt	tics, 1st Edition,	Notion Press.					
Liam Dam	nien, 2019, Data M	ining : Your	Ultimate guide to	o a Comprehensiv	ve under	rstanding			
of Data M	ining, Independent	ly Published							
Online Resource	s	ີ່ເພື່	15 FTD						
http://hanj	.cs.illinois.edu/bk2	/toc.pdf							
https://www.scribd.com/document/333396661/Dunham-Data-Mining-pdf#									
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	К6-Сі	reate			
Course designed by: Dr.P. Prabhu									

	ourse outcome (STrogramme outcomes									
PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	M(2)	L(1)	M(2)	M (2)	L(1)	L(1)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	L(1)	S(3)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)
CO4	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)
CO5	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)
W. AV	3	3	2.4	2.2	2.8	2	1.6	2.6	2	2.6
		~ .	~				-			

Course Outcome VS Programme Outcomes

S-Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	M(2)	M(2)	M(2)
CO2	S(3)	S(3)	M(2)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	S(3)	S(3)	L(1)	S(3)
CO5	S(3)	S(3)	S(3)	L(1)	S(3)
W. AV	2.8	2.8	2.6	1.6	2.8

S –Strong (3), M-Medium (2), L- Low (1)

		SEMESTER II							
Core: 8	Course code	ARTIFICIAL INTELLIGENCE AND	T	Credits: 4	Hours: 4				
	557202	MACHINE LEARNING							
		Unit – I							
Objective	1 To Unders	and the basic concepts in Artificial Intelligenc	e ar	nd Knowledg	ge				
Artificial	Artificial Intelligence - The AI Problems - The Underlying Assumptions - AI Techniques Problems:								
Problems Spaces and Search – Defining the Problems as a State Space Search – Production Systems –									
Problem (Problem Characteristics - Production System Characteristics - Issues in the Design of Search								
Programm	es - Generate -	- and-Test - Hill Climbing - Best-First Searc	-h	- Problem R	eduction -				
Constraint	Satisfaction – N	Ieans – Ends – Analysis.							
Outcome	1 Analyze th	e foundational concepts of Artificial Inte	llige	ence, includ	ling K4				
	problem sp	aces, search techniques, production systen	ıs,	and constra	aint				
	satisfaction	to develop a deep understanding and effecti	ve p	oroblem-solv	ring				
	strategies								
		Unit II							
Objective	2 Become fa	miliar with basic principles of AI toward p	robl	em solving,	inference,				
	perception	knowledge representation, and learning.							
Knowledg	ge Representat	on Issues: Representation and Mappings –	App	roaches to]	Knowledge				
Representa	ation – Issues in	Knowledge Representation – The Frame Proble	m -	Using predic	ate logic –				
Representi	ing Simple fact	s in Logic – Representing Instance and Is a r	elat	ionships – C	Computable				
functions a	and Predicates –	Resolutions – Natural Deductions – Representir	ng K	nowledge U	sing Rules:				
Procedura	l versus Declar	ative Knowledge – Forward versus Backward	Re	asoning – N	Aatching –				
Control K	nowledge.								
Outcome	2 Comprehe	nd knowledge representation approaches, logic	:-ba	sed	K2				
	representa	tion of facts and relationships, and the distinct	ions	between					
	procedura	and declarative knowledge, enabling effective	ana	alysis and					
	understand	ling of knowledge representation issues and re	asoi	ning strategi	es				
		Unit III							
Objective	3 To know a	bout the basic concepts of Machine Learning		т ·					
Introduct	ion to Machin	e Learning : Human Learning - Types of H	uma	in Learning	- Machine				
Learning	- Types of Ma	chine Learning - Problems Not to be Solved	usir	ng Machine	Learning -				
Applicatio	ns of Machine L	earning - State of the Art Languages / Tools in M	lach	ine Learning	-				
Issues in N	Alachine Learnin				• • • • • • •				
Outcome	3 Gain a so	lid understanding of machine learning co	ncej	pts, distingu	ush K4				
	between h	uman and machine learning types, and ci	ritic	ally assess	the				
	applicabili	y and limitations of machine learning, the	ereb	y enabling	tne				
	analysis an	a evaluation of key aspects in the field							

		Uni	it IV			
Objective 4	To acquire knowledge	e about vario	us tools of Mach	ine Learning		
Preparing to	Model: Introduction - N	Machine Lear	ning Activities - I	Basic Types of Ma	chine Learning -	
Exploring Str	ucture of Data - Data (Quality and R	emuneration - D	ata Pre-processing	. Modelling and	
Evaluation :	Introduction - Selectin	g a Model ·	- Training a Mo	odel - Model Rej	presentation and	
Interpretabilit	y – Evaluating Performa	nce of a Mod	el - Improving Pe	erformance of a Mo	odel.	
Outcome 4	Prepare to model	by underst	anding fundam	ental machine	learning K3	
	activities and explori	ng data stru	cture, ensuring	data quality thro	ugh pre-	
	processing, and then	proceed to	model selection,	training, repres	entation,	
	and evaluation for en	hanced perfo	ormance			
Unit V						
Objective 5 To understand about Probability and statistical tools						
Overview of I	Probability : Introduction	n - Importance	e of Statistical To	ols in Machine Le	arning - Concept	
of Probability	- Random Variables -	Common Dis	screte Distributio	ns - Multiple Ran	dom Variables -	
Central Limit Theorem - Sampling Distributions - Hypothesis Testing - Monte Carlo Approximation -						
Bayesian Con	cept Learning : Introduc	tion - Importa	ance of Bayseian	Methods - Bayes	Theorem - Bayes	
Theorem and	Concept Learning - Bay	esian Belief N	letwork.			
Outcome 5 Understand probability's role in machine learning, including concepts like K5						
	random variables,	distributions	, Bayesian me	thods, and hyp	othesis	
	testing, to effectively	apply statis	stical tools in a	nalyzing and enh	ancing	
	machine learning mo	dels				
Suggested R	eadings:					
AnuradhaSrin	ivasaraghavan, Vincy E	li <mark>za</mark> beth, 2019	<mark>)</mark> , Machine <mark>Le</mark> arn	ing, Wiley Publica	tions.	
Kevin Night a	nd Elaine Rich, Nair B	, <mark>20</mark> 17 ," <mark>Art</mark> if	icial Intelligence'	', McGraw Hill - (Unit I,II) Russel,	
Artificial Inte	lligence, 2015 <mark>, A M</mark> oder	n Approach, I	Pearson Educatio	n India; 3rd Editio	n.	
SaikatDutt, S	ubramanian Chandram	ouli, <mark>Am</mark> it K	umar Das, 2018	8 "Machine Learr	ning" – Pearson	
Education; Fin	rst Edition, (Unit III,IV a	and V)				
Online Resou	irces:					
https://www.	infosys.com/oracle/insi	ghts/docume	nts/ai-machine-l	earning.pdf		
https://mimo	.mit.edu/wp-content/up	oloads/2023/0	3/mimoDLW23.	<u>pdf</u>		
https://bright	terion.com/wp-content/	uploads/2019	9/05/Artificial-In	telligence-And-M	lachine-	
Learning-Th	e-Next-Generation.pdf		1	1	1	
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create	
	Course Designed by: Dr.K.Mahesh					

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	M(2)	S(3)	M(2)	L(1)	L(1)	L(1)	L(1)	L(1)	L (1)
CO2	L(1)	L(1)	S(3)	L (1)	L (1)	M(2)	L(1)	M(2)	L (1)	L (1)
CO3	M(2)	M (2)	S(3)	L (1)	M(2)	M(2)	M (2)	L(1)	M(2)	M (2)
CO4	M(2)	M (2)	S(3)	L (1)	M(2)	L(1)	L(1)	L(1)	M(2)	L (1)
CO5	L(1)	L (1)	L(1)	L (1)	S(3)	L(1)	L(1)	M(2)	M(2)	L (1)
W. AV	1.6	1.6	2.6	1.2	1.8	1.4	1.2	1.4	1.6	1.2

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	M (2)	M (2)	L(1)	L (1)	L (1)	L (1)
CO2	M (2)	M (2)	L(1)	L (1)	L (1)	L (1)
CO3	M (2)	M (2)	L (1)	L (1)	L (1)	L (1)
CO4	L (1)	L (1)	S (3)	S (3)	L (1)	S (3)
CO5	L (1)	L (1)	S (3)	L (1)	S (3)	L (1)
W.AV	1.6	1.6	1.8	1.4	1.4	1.4

S – Strong (3), M-Medium (2), L- Low (1)

	SEMESTER- II						
Core: 9	Course code	WEB TECHNOLOGY	Т	Credits:4	Hours:4		
	557203						
		Unit I		1	<u> </u>		
Objective 1	To develop a web	application using HTML techn	ologi	es.			
HTML Comm	non tags: List, Tables, in	nages, forms, Frames; Cascading	Style	e sheets. Introdu	ction to Java		
Scripts, Objec	ts in Java Script, Dynam	ic HTML with Java Script. XML	- Do	cument type def	inition, XML		
Schemas, Doc	ument Object model, Pre	esenting XML.					
Outcome 1	Acquired the skills	and project-based experience i	1eede	d for entry	K1		
	into web application	n and development careers.			NI		
		Unit II					
Objective 2	To develop a web	application using java technology	gies.				
Java Beans –	Introduction, Advantages	s of Java Beans, BDK, Introspect	ion, U	Jsing Bound pro	perties, Bean		
Info Interface,	Constrained properties,	Persistence, Customizes, Java Be	ans A	PI, Introduction	to EJB's.		
Outcome 2 To do the experiment based on Java Beans				K2			
	Unit III						
Objective 3	Objective 3 To be able to understand server side software development						
Web Servers a	Web Servers and Servlets: Tomcat web server, Introduction to Servlets - Lifecycle of a Servlet, JSDK, The						
Servlet API, '	The javax.servlet Packag	ge, Reading Servlet parameters,	Read	ing Initialization	n parameters.		
The javax.serv	vlet HTTP package, Han	dling Http Request & Responses	, Usir	ng Cookies-Sess	ion Tracking,		
Security Issue	s.						
Outcome 3	Students will be ab	le to write a server side java ap	plica	tion	K4		
		Unit IV					
Objective 4	To understand the	Server side programming using	g JSP				
Introduction t	to JSP: The Problem w	with Servlet. The Anatomy of a	ı JSP	Page, JSP Pro	ocessing. JSP		
Application I	Design with MVC Set	ting Up and JSP Environment	- I1	nstalling the Ja	iva Software		
Development	Kit, Tomcat Server & Te	esting Tomcat. JSP Application D	evelo	pment - Genera	ting Dynamic		
Content, Usin	ng Scripting Elements In	nplicit JSP Objects, Conditiona	l Pro	cessing – Displ	aying Values		
Using an Exp	ression to Set an Attribut	e, Declaring Variables and Metho	ods E	rror Handling an	d Debugging		
Sharing Data	Between JSP pages, Requ	lests, and Users Passing Control a	and D	ate between Pag	es.		
Outcome 4	Students will be ab	le to write a server side java ap	plica	tion	K3		
		Unit V					
Objective 5	To understand JSP	, JDBC and Java Beans					
Database Acc	cess: Database Program	ming using JDBC, Studying J	avax.	sql.* package,	Accessing a		
Database from	n a JSP Page, Application	on - Specific Database Actions,	Dep	loying JAVA Be	ans in a JSP		
Page.							
Outcome 4	Students will be al	ble to write a server side java a	pplic	ation along with	К5		
	JDBC connectivity	•			183		

Suggested Readings:-								
Chris Bates, 2006	Chris Bates, 2006 Web Programming: Building Internet Applications, 3e							
Jeffrey C. Jacksor	ı, 2011 Web Technologie	s: A Computer Scien	nce Perspective, Pe	arson education,				
1e	le							
Jason Hunter, O' I	Jason Hunter, O' Reilly, 2010 Java Servlet Programming, 2e							
Hans Bergsten, O	Hans Bergsten, O'Reilly, 2009 Java Server Pages, 3e.							
Patrick Naughton	and Herbert Scheldt, The	complete Reference	e Java 2, 7e, Tata N	AcGraw Hill.				
Robert W. Sebesta	a, "Programming the Wo	rld Wide Web", Pear	rson Education, 4e,	, 2011.				
Online Resources:								
https://www.tutorialspoin	t.com/jsp/jsp_tutorial.pd	<u>f</u>						
https://www.javacodegee	ks.com/2014/12/java-ser	vlet-tutorial.html						
K1_Romombor K2_Unde	rstand K3-Apply	K4-Analyze	K5-Evaluate	K6-Create				

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
Course designed by: Dr.P. Prabhu					

PO **PO1** PO2 **PO4 PO7** PO3 **PO5 PO6 PO8 PO9 PO10** ALAGAS CO M(2) CO1 S(3) S(3) L(1) M(2) L(1) L(1) L(1) M(2) M(2) S(3) S(3) **CO2** S(3) S(3) M(2) S(3) L(1) L(1) M(2) S(3) S(3) S(3) S(3) **CO3** S(3) S(3) M(2) S(3) M(2) M(2) M(2) S(3) **CO4** S(3) M(2) S(3) S(3) S(3) M(2) M(2) M(2) S(3) CO5 S(3) S(3) S(3) M(2) M(2) S(3) S(3) M(2) M(2) S(3) W. 2.8 3 3 2.4 2.2 2.6 1.6 1.6 2 2.8 AV

S – Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

PSO	PSO1	PSO2	PSO3	PSO4	PSO5
со					
CO1	M(2)	L(1)	M(2)	M(2)	M(2)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	S(3)
CO5	S(3)	S(3)	S(3)	M(2)	S(3)
W. AV	2.8	2.6	2.8	2.4	2.8

S – Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Outcomes

		SEMESTER-II					
Core: 10	Course code	DESIGN AND ANALYSIS	Т	Credits:4	Hours:4		
	557204	OFALGORITHMS					
UNIT I							
Objective 1	Objective 1 To understand the basics of Algorithm						
Introduction: W	hat is Algorithm?	P – Fundamentals of Algorithmic problem s	olving	– importan	t problem		
types – Fundar	mentals of Analys	is of Algorithm efficiency- Mathematical	Analy	sis of Non I	Recursive		
Algorithms-Ma	thematical Analy	sis of Recursive Algorithms - Algorithm	n for (Computing	Fibonacci		
Numbers – Emp	pirical Analysis of	Algorithms.					
Outcome 1	To list the fund	lamental concepts of Algorithm			K1,K2		
		UNIT II					
Objective 2	To demonstrate	a familiarity with major algorithms and o	data st	ructures			
Brute Force – S	Selection Sort, Bu	bble sort, Sequential Search - Closet-Pair a	and Co	onvex-Hull I	Problems-		
Depth first sea	rch and Breadth	first search - Divide and Conquer - Mer	ge sor	t, Quick son	rt, Binary		
Search, Strasser	n's matrix multipl	ication.					
Outcome 2	Outcome 2 To develop efficient algorithm for a given problem and able to						
analyze its time and space complexity					K5		
UNIT III							
Objective 3To apply important algorithmic design paradigms and methods of analysis							
Dynamic Programming - General Method - Computing a Binomial Coefficient - Warshall's and							
Floyd's Algorit	thms- Optimal Se	arch Binary trees – Knapsack Problem – C	Greedy	Technique	- General		
Method, Applic	cations - Prim' <mark>s A</mark> l	gorithm, Kruskal's Algorithm, Dijikstra's A	lgoritl	ım.			
Outcome 3	To apply d	lesign <mark>and</mark> develop <mark>ment</mark> principles	in	the k	K3. K4		
	construction of	f software systems of varying complexity		1			
	1	UNIT IV					
Objective 4	To explain abou	it the various algorithm design technique	s				
DecreaseandCo	onquer-Insertionsc	rt-DepthFirstSearch, BreadthFirstSearch	- To	pological S	Sorting –		
Algorithm for g	generating Combir	natorial Objects. Transform and Conquer –	Presor	ting – Heap	and Heap		
sort – Problem	Reduction – Com	outing Least Common Multiple – Counting	Paths i	n a Graph- I	Reduction		
of Optimization	n Problem – Reduc	ction to Graph Problems.					
Outcome 4	To apply the al	gorithm design techniques to any of the r	eal	ŀ	ζ3		
	world problem						
		UNIT V					
Objective 5	To determine t	he various problem types		~ 1 ~			
Back Tracking	– General Meth	od – 8 Queen's Problem – Sum of Sub	osets –	Graph Co	louring –		
Hamiltonian cy	cle – Branch and	Bound – General Method – Assignment Pro	blem -	• Knapsack j	problem –		
Travelling Sale	sman Problem. P,	NP and NP-complete Problems					
Outcome 5	To use curren	t techniques, skills, and tools necessary	y for		_		
	computing pra	ctice		K	.5		

Suggested Readings:-

AnanyLevitin, 2012. Introduction to Design and Analysis of Algorithms, Pearson education, 3e.
 Lee.R.C.T, Shian-Shyong Tseng, Ruei-Chuan Chang, Tsai.Y.T, 2005, Introduction to the Designand Analysis of Algorithms: A Strategic Approach, McGraw-Hill
 Sridhar.S,1e, Design and Analysis of Algorithms, 2014 oxford university press.

Online Resources

www.geeksfor geeks.org/design-and-analysis-of-algorithms

https://ocw.mit.edu/courses/6-046j-design-and-analysis-of-algorithms-spring-2015

https://onlinecourses.nptel.ac.in/noc20 cs71/preview

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			(Course designed b	y: Dr.G. Shanthi

Course Outcome VS Programme Outcomes

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)	L(1)	L(1)	L(1)	L(1)	L(1)	M(2)	L(1)
CO2	M(2)	S(3)	S(3)	M(2)	M(2)	L(1)	L(1)	L(1)	M(2)	M(2)
CO3	S(3)	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)	M(2)	M(2)	L(1)
CO4	M(2)	M(2)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)	L(1)	M(2)
CO5	S(3)	M(2)	M(2)	S(3)	L(1)	L(1)	M(2)	M(2)	L(1)	L(1)
W. AV	2.6	2.4	2.4	2.2	1.6	1.4	1.6	1.6	1.6	1.4

S – Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

PSO					
	PSO1	PSO2	PSO3	PSO4	PSO5
CO					
CO1	S(3)	S(3)	S(3)	M(2)	M(2)
CO2	M(2)	S(3)	M(2)	M(2)	L(1)
CO3	S(3)	M(2)	S(3)	M(2)	M(2)
CO4	M(2)	S(3)	M(2)	M(2)	M(2)
CO5	M(2)	M(2)	M(2)	M(2)	M(2)
W. AV	2.4	2.6	2.4	2	1.8
~ ~					

S – Strong (3), M-Medium (2), L- Low (1)

SEMESTER II							
Core: 11	Course code	LAB I: ALGORITHMS LAB	P	Credits:2	Hours:4		
	557205						
Objectives:	• To under	stand the importance of algorithm	and	its complexities			
	• To imple	ment various divide and conquer	techni	iques examples			
	• To imple	ment various Greedy techniques of	examp	oles.			
	• To imple	ment various Dynamic Programm	ing te	chniques exam	ples.		
	 To provid 	le a practical exposure of all algo	rithms	5.			
LIST OF EXPERIMENTS							
1. Write a pro	gram to find GCI) and LCM of given numbers					
2. Write a pro	gram to display F	ibonacci series using recursion					
3. Write a to	sort given set of n	umbers using Selection Sort					
4. Write a pro	gram to sort giver	set of numbers using Bubble So	rt				
5. Write a pro	gram to search the	e given number using Linear Sea	rch				
6. Write a pro	gram to search the	e given number using Binary Sea	rch				
7. Write a pro	gram to perform S	Stack operations (Push, Pop, and	Disp	lay) using array	/S.		
8. Write a pro	gram to find Bin	mial coefficient					
9. Write a pro	ogram to impleme	ent Warshall's Algorithm for f	nding	g transitive clos	sure of the		
given graph	1	S alla b					
10. Write a pro	gram to implement	at all-pairs shortest paths problem	using	g Floyd's algor	rithm		
11. Write a pro	gram to implement	t Knapsack Problem using Dyn		Programming	D		
12. Find Minir	num Cost Spann	ng Tree of a given connected t	indire	cted graph usi	ng Prim 's		
algorithm.	num Cost Snonni	Tree of a given connected un	linaat	d anonh using	Vaustalla		
15. Find Willing	num Cost Spannin	ig Thee of a given connected und	irrecte	ed graph using	Nruskai s		
14 Write a pro	orram to implement	at Topological Orderingfor Dire	eted (Acyclic Graph (DAG)		
14. Write a pro	grain to implement	a program			to		
printallther	odesreachablefro	nagivenstartingnodeinadigraphus	ing B ı	readth	First		
Searchmet	hod.			cuum	11150		
16. Write a	program to ch	eckwhetheragivengraphisconnect	edorn	otusing Depth	First		
Searchmet	hod			01			
17. Write a pi	ogram to sort set	of n integer elements using the	e Qui	ck sort metho	d and		
compute its	s time complexity.						
18. Write a pro	ogram to sort set	of n integer elements using the	Mer	ge Sort metho	d and		
compute its	s time complexity.						
19. Write a pro	gram to design an	nd implement in java to find a Su	bset c	of a given set S	= {S1,		
S2,,Sn}	of n positive integ	ers whose SUM is equal to a give	en pos	sitive integer d.			
20. Write a pro	gram to implement	nt Traveling Salesman Problem					
21. Write a pro	gram to find all I	Iamiltonian Cycle in a connecte	d und	lirected Graph	G of n		
vertices usi	ng the backtracki	ng principle					
Outcomes:	• CO1: To ca	lculate the time complexity of al	gorith	m.			
	CO2: To so	ort the given numbers using vario	us sor	ting algorithms	•		
	• CO3: To w	rite programs for the problems us	ing d	ivide and conqu	ier and		
	greedy met	hod.					
	• CO4: To w	rite programs for the problems us	ing d	ynamic progran	nming.		
	• CO5: To w	rite programs for the problems us	ing b	acktracking			

Online	https://sjcit.ac.in/	wp-content/u	ploads/2022/03/I	DAA-LAB-MAN	JUAL2020-		
Resources	<u>1.pdf</u>						
	https://camelliait. https://people.iiti	ac.in/Lab%2(sm.ac.in/~dov) <u>Manual/ADA%</u> vnload/lab%20m	20Lab%20Progr	<u>ams.pdf</u> 204.pdf		
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create		
Course designed by: Dr. G. Shanthi							

Course Outcome VS Programme Outcomes

PO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	S(3)	M(2)	M(2)	M(2)	L(1)	L(1)	-	-	-	L(1)
CO2	M(2)	M(2)	S(3)	M(2)	L(1)	-	-	-	M(2)	M(2)
CO3	M(2)	M(2)	M(2)	L(1)	L(1)	160-0	-	-	-	L(1)
CO4	M(2)	M(2)	M(2)	L(1)	M(2)		200	-	L(1)	L(1)
CO5	S(3)	M(2)	M(2)	L(1)	L(1)	L(1)	18	-	L(1)	L(1)
W. AV	2.4	2	2.2	1.4	1.2	1	2	-	1.3	1.2

S – Strong (3), M-Medium (2), L- Low (1)

Course Outcome	V <mark>S P</mark> rog <mark>r</mark> an	nme Sp <mark>e</mark> cific	Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	S(3)	S(3)	M(2)
CO3	S(3)	M(2)	M(2)	M(2)	L(1)
CO4	M(2)	S(3)	L(1)	L(1)	L(1)
CO5	M(2)	M(2)	L(1)	L(1)	L(1)
W. AV	2.4	2.4	1.8	1.8	1.4

S-Strong (3), M-Medium (2), L- Low (1)

SEMESTER- II										
Core: 12	Course code	ARTIFICIAL INTELL	GENCE	P	Credits:2	Hours:4				
	557206	AND								
		MACHINE LEARNIN	G LAB							
Objectives	S:				•					
• De	velop a strong u	nderstanding of graph trave	rsal and sea	ırch	algorithms t	hrough the				
imj	plementation of B	FS and DFS.								
• Ga	in practical exper	ience in solving optimization	n problems i	using	g the Hill Cli	mbing and				
A*	A* search algorithms.									
• Cre	• Create a functional Tic-Tac-Toe game, enhancing programming and user interface design									
abi	lities.									
• Lo	earn how to work	with datasets, perform statis	tical analysi	s, ar	nd create visu	alizations				
usi	ng Python librarie	s such as Pandas and Matplot	lib.							
G	ain insights into	machine learning through	h the impl	omo	ntation of r	ule based				
ala	orithms (Find S)	Candidate Elimination) and 1	inear regress	vion	setting the fo	undation				
for	further ML explo	ration	inear regress	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	setting the N	Jundation				
1 1	Write a Program to	Implement Breadth First Se	arch							
1.	Write a Program to	Implement Depth First Sear	ch							
3 1	3. Write a program to implement Hill Climbing Algorithm									
4. V	4 Write a program to implement A* Algorithm									
5. 1	Write a program to	implement Tic-Tac-Toe gan	ne							
6. I	implementation of	Python basic Libraries such	as Math, Nu	mpy	and Scipy					
7. I	implementation of	Python Libraries for ML app	lication sucl	h as	Pandas and					
Ma	tplotlib									
8. 0	Creation AND Loa	ading different datasets in Pyt	h <mark>on</mark> .							
9. V	Write a python pro	gram to compute Mean, Med	lian, Mode, V	Vari	ance and					
Sta	ndard Deviation u	sing Datasets								
10.	Implementation of	f Find S Algorithm								
11.	Implementation of	f Candidate elimination Algo	rithm							
12.	Write a program t	o implement simple Linear R	egression an	ld Pl	ot the graph					
Outcomes	: Upon completio	n of the course, the students s	hould be abl	le to	:					
• Ap	ply various AI sea	rch algorithms (uninformed,	informed, he	euris	tic,					
cor	straint satisfaction	n,)								
• Un	derstand the funda	mentals of knowledge repres	entation, inf	eren	ce.					
• Un	derstand the funda	mentals of theorem proving	using AI too	ls.						
• Der	monstrate working	g knowledge of reasoning in t	he presence	of ii	ncomplete					
and	l/or uncertain info	rmation								
Online Re	sources:					_				
https://mr	cet.com/pdf/Lab	%20Manuals/CSEAIML/A	rtificial%20	Inte	elligence%20	and%20				
Machine%	620Learning%20)Lab%20Manual.pdf								
https://ww	w.jnit.org/wp-co	ntent/uploads/2020/04/Mac	hine-Learn	ing-	<u>Lab-Manual</u>	. <u>pdf</u>				
https://ww	w.scribd.com/do	<u>cument/640302664/AIML-1</u>	<u>Manual</u>							

COURSE OUTCOMES

S.No.	C	ourse Outcomes		Level	Unit C	Covered	
CO1	Re	ecall and explain B	FS and DFS	K1,K2	-		
	gr	aph traversal algor	ithms.				
CO2	Aj	oply Python librari	es (Pandas,	K3	-		
	M	atplotlib) for data 1	manipulation				
	an	d rule-based algori	thms for				
	m	achine learning.					
CO3	A	nalyze data using s	tatistical	K4,K5	-		
	m	easures and evaluat	te optimization				
	alg	gorithm effectivene	ess.				
CO4	Cr	eate a functional T	ic-Tac-Toe	K6	-		
	ga	me and generate h	ypotheses and				
	lin	lear regression mod	dels.				
CO5	A	nalyze datasets, ide	entify patterns,	K4,K5	-	-	
	an	d evaluate algorith	m and model	COD DI			
	ou	tcomes critically.		- TO			
K1-Remem	ber	K2-Understand	K3-Apply	K4-	K5-Evaluate	K6-Create	
		5	2 2 2	Analyze	6.		

After the completion of this course the students will be able to,

Course Outcome Vs. Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	L(1)							
CO2	L(1)	S(3)	M(2)	M(2)	M(2)	L(1)	L(1)	L(1)	L(1)	L(1)
CO3	L(1)	L(1)	S(3)	M(2)	L(1)	L(1)	L(1)	L(1)	L(1)	L(1)
CO4	L(1)	L(1)	M(2)	S(3)	M(2)	L(1)	L(1)	L(1)	L(1)	L(1)
CO5	L(1)	L(1)	L(1)	M(2)	S(3)	M(2)	L(1)	L(1)	L(1)	L(1)
W.A V.	1.4	1.6	1.8	2	1.8	1.2	1	1	1	1

S-Strong(3), M-Medium(2), L-Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6
CO1	S(3)	-	-	-	-	S(3)
CO2	M(2)	S(3)	S(3)	-	-	S(3)
CO3	-	-	S(3)	-	-	-
CO4	-	-	-	-	-	-
CO5	M(2)	-	-	-	S(3)	S(3)
W.AV.	1.4	0.6	1.2	-	0.6	1.8

S-Strong(3), M-Medium(2), L-Low(1)

			SEMESTER-II				
DSE-2		Course Code	DEEP LEARNING	Τ	Credits	3	Hours:3
		557554					
			Unit I				
Objectiv	/e 1	To Understand the	principles of neural netwo	orks			
Basics	of ne	ural networks - Basic	c concept of Neurons – Per	cept	ron Algorithi	n – l	Feed Forward
and Ba	ck Pr	opagation Networks.					
Outcom	e 1	Summarize the fund	damentals of neural netwo	orks		K1	
			UNIT II				
Objectiv	ve 2	To Understand the	basic concepts of deep lear	rnin	g		
Introdu Propag Avoid Descer	action gation ing B nt – R	to deep learning - Algorithm – Vanis ad Local Minima – I Legularization – Drop	Feed Forward Neural Net shing Gradient problem – Heuristics for Faster Traini out.	work Mit ing –	ss – Gradien igation – Re - Nestors Ace	t De lU I celera	scent – Back Heuristics for ated Gradient
Outcom	e 2	Understand the deed different problems	ep learning concepts and	l ap	ply them to	K3	
		unierent problems	Unit III				
Objectiv	103	To Understand and	implement the architectu	ros (of Convolutio	n n	aural
Objectiv	<i>c</i> 5	networks	implement the aremeetu	1030		<i>)</i> (ui ai
Convol Learnii applica	lution 1g - tions	– Pooling Layers – Introduction to R	- Transfer Learning – Ima NNs, Unfolded RNNs,	age (Seq2	Classification Seq RNNs,	usii LS	ng Transfer TM, RNN
Outcom	e 3	Acquire know ledg	e abo <mark>ut how to d</mark> es	ign	and apply	y	K4
		Convolutional and	d <mark>Recurrent</mark> Neural	Net	works and	ł	
		Understand the	concepts of different	de	ep learning	g	
		architectures.		1			
			Unit IV				
Objectiv	ve 4	To introduce and in	plement the architecture	s of o	deep learnin	g	
Deep I	learn	ing Architectures: LS	TM, GRU, Encoder/Decod	der A	rchitectures	– Aı	itoencoders –
Standa	rd- S	Sparse – Denoising	g – Contractive- Variat	ional	Autoencoder	ъ –	Adversarial
Genera	tive l	Networks – Autoenco	der and DBM.				
Outcom	e 4	Cultivate the know	ledge about Deep learning	g arc	chitectures		K2
			Unit V				
Objectiv	ve 5	To acquire knowled	ge about deep learningap	plica	tions		
Applic	ation	s of deep learning :	Image Segmentation - Ob	oject	Detection -	Auto	omatic Image
Captio	ning	- Image generation	with Generative Adversari	al N	etworks – V	ideo	to Text with
LSTM	Mod	els.					
Outcom	e 5	Understand and gai	n knowledge about how to	o cre	ate deep		K5
		learning application	s and analyze the role of o	deep	learning		
		models in image pro	ocessing.				

Suggested Readings:-

Ian Good Fellow, YoshuaBengio, Aaron Courville, "Deep Learning", MIT Press, 2017.

Goodfellow, I., Bengio, Y., and Courville, A., Deep Learning, MIT Press, 2016.

Francois Chollet, "Deep Learning with Python", Manning Publications, 2018.

Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence", Apress, 2017.

RagavVenkatesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing", CRC Press, 2018.

Navin Kumar Manaswi, "Deep Learning with Applications Using Python", Apress, 2018. Joshua F. Wiley, "R Deep Learning Essentials", Packt Publications, 2016.

Online Resource:

https://web.pdx.edu/~nauna/week7b-neuralnetwork.pdf

https://www.microsoft.com/en-us/research/wp-

content/uploads/2016/02/DeepLearningBook RefsByLastFirstNames.pdf

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create			
Course Designed by: Dr.L.Sathiya								

Course Designed by: Dr.L.Satiliya

Course Outcomes VsProgramme Outcomes

PO										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO										
CO1	S(3)	S(3)	S(3)	M(2)	S (3)	S(3)	S(3)	L(1)	S(3)	S(3)
CO2	S(3)	M(2)	S(3)	L(1)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)
CO4	S(3)	S (3)	L(1)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)	S (3)	M(2)	S(3)	M(2)	S(3)
W.AV	3	2.8	2.4	2.4	2.8	2.8	2.8	2.6	2.8	2.8

S-Strong (3) M- Medium (2) L-Low (1) Course Outcome VS Programme Specific Outcomes

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	L(1)	S(3)	S(3)	M(2)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	M(2)	S(3)	S(3)	L(1)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	3	2.2	2.8	3	2.4

S-Strong (3) M- Medium (2) L-Low (1)

		SEMESTER-II			
DSE-2	Course code	CYBER SECURITY	Т	Credits	: 3 Hours: 3
	557555	Unit I			
Obiective	1 To Understand th	e fundamentals of cybercrit	mes		
INTRO	DUCTION TO CY	BERCRIME: Cybercrime-	Defin	ition and	Origins of the
WordCy	bercrime and Inform	ation Security, Who are Cy	bercrii	minals? C	lassifications of
Cybercri	mes, A Global Persp	ective on Cybercrimes, Cybe	rcrime	e Era: Sur	vival Mantra for
the Netiz	zens. Cyberoffenses:	How Criminals Plan Them:H	Iow C	riminals I	Plan the Attacks,
Social E	Engineering, Cybersta	alking, Cybercafe and Cybe	rcrime	s, Botnet	s: The Fuel for
Cybercri	me, Attack Vector, C	loud Computing.			
Outcome	1 Summarizethe fu	ndamentals of cybercrimes			K1, K2, K3
		UNIT II			
Objective	2 To Understand th	e basic concepts ofmoblie a	nd wir	eless dev	ices in
	cvbercrime				
CYBER	CRIME: Mobile and	d Wireless Devices:Introduct	ion, P	roliferatio	n of Mobile and
Wireless	Devices, Trends i	n Mobility, Credit Card Fi	rauds	in Mobil	e and Wireless
Computi	ng Era, Security Cl	nallenges Posed by Mobile	Devic	es, Regis	try Settings for
Mobile 1	Devices, Authenticati	on Service Security, Attacks	on M	obile/Cell	Phones, Mobile
Devices:	Security Implication	ns for organizations, Organiz	zationa	al Measur	es for Handling
Mobile,	Organizational Secur	ity <mark>Policies and Measures</mark> in M	Mobile	Computin	ng Era, Laptops.
Outcome	2 Understand the	cy <mark>bercrime concepts</mark> and a	pply	them to	K2,K3,K4
	different devices	Unit III			
Objective	3 To Understand th	e tools and methods in cybe	ercrim	es	
TOOLS	AND METHODS	USED IN CYBERCRIME:	Introd	uction. Pr	oxy Servers and
Anonym	izers, Phishing, Passy	word Cracking, Keyloggers a	nd Spy	wares, Vi	irus and Worms,
Trojan-h	orses and Backdoors	s, Steganography, DoS and	DDoS	At-tacks,	SQL Injection,
Buffer C	overflow, Attacks on	Wireless Networks. Phishing	and I	dentity Th	eft: Introduction
to Phishi	ing, Identity Theft (II) Theft).		-	
Outcome	3 Acquire knowled	ge about how the tools an	d met	hods are	K2,K3,K4
	used in cybercrim	ne			
		Unit IV			
Objective	4 To understand th	e concepts of computer for	ensics		
UNDER	STANDING COM	IPUTER FORENSICS: If	ntrodu	ction, D	igital Forensics
Science,	The Need for Co	mputer Forensics, Cyber fo	orensic	s and D	igital Evidence,
Forensic	s Analysis of E-Mai	l, Digital Forensics Life Cyc	cle, Cl	hain of C	ustody Concept,
Network	Forensics, Approa	ching a Computer Forensic	es Inv	restigation	, Setting up a
Compute	er Forensics Laborato	ry: Understanding the Require	ement	s, Comput	er Forensics and
Steganog	graphy, Relevance of	the OSI 7 Layer Model to Co	mpute	r Forensic	S.
Outcome	4 Cultivate the kn	owledge about computer for	ensics	5	K4,K5

Unit V

Objective 5 To acquire knowledge about forensics and social networking sites and cyber laws

Forensics and Social Networking Sites: The Security/Privacy Threats, Computer Forensics from Compliance Perspective, Challenges in Computer Forensics, Special Tools and Techniques, Forensics Auditing, Antiforensics. **INTRODUCTION TO SECURITY POLICIES AND CYBER LAWS:** Need for An Information Security Policy, Information Security Standards – ISO, Introducing Various Security Policies and Their Review Process, Introduction to Indian Cyber Law, Objective and Scope of the IT Act, 2000, Intellectual Property Issues, Overview of Intellectual Property Related Legislation in India, Patent, Copyright, Law Related to Semiconductor Layout and Design, Software License.

Outcome 5 Understand and gain knowledge about forensics and social K3,K6 networking sites and acquire the knowledge of cyber laws

Suggested Readings:-

SunitBelapure and Nina Godbole, "Cyber Security: Understanding Cyber Crimes, Computer Forensics And Legal Perspectives", Wiley India Pvt Ltd, ISBN: 978-81-265-21791, Publish Date 2013.

Dr. Surya PrakashTripathi, RitendraGoyal, Praveen Kumar Shukla, KLSI. "Introduction to information security and cyber laws". Dreamtech Press. ISBN: 9789351194736, 2015. Thomas J. Mowbray, "Cybersecurity: Managing Systems, Conducting Testing, and Investigating Intrucions". Convright © 2014 by John Wiley & Sons. Inc. ISBN: 978–1

Investigating Intrusions", Copyright © 2014 by John Wiley & Sons, Inc, ISBN: 978 - 1-118 -84965 -1

James Graham, Ryan Olson, Rick Howard, "Cyber Security Essentials", CRC Press, 15-Dec 2010.

Anti- Hacker Tool Kit (Indian Edition) by Mike Shema, McGraw-Hill Publication.

Online Resource:

https://oulms.in/wp-content/uploads/2022/04/Chapter-1.pdf https://osou.ac.in/eresources/introduction-to-indian-cyber-law.pdf

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			Cour	se Designed by	: Dr.L.Sathiya

РО						201				DO10
СО	PO1	PO2	PO3	PO4	PO5	PO6	PO 7	PO8	PO9	PO10
CO1	L(1)	M(2)	M(2)	L(1)	S(3)	S(3)	M(2)	M(2)	M(2)	L(1)
CO2	M(2)	S(3)	S(3)	S(3)						
CO3	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	M(2)	S(3)	S(3)
CO4	M(2)	M(2)	L(1)	M(2)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)
CO5	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	L(1)	S(3)	S(3)	S(3)
W.AV	2.2	2.4	2	2	2.2	2.4	2	2.4	2.8	2.6

Course Outcomes VsProgramme Outcomes

S-Strong (3) M- Medium (2) L-Low (1) Course Outcome VS Programme Specific Outcomes

PSO	DCO1	DCO1	DCO2	DCO4	DCOF	
CO	PS01	PS02	PS03	PS04	PS05	
CO1	S(3)	S(3)	M(2)	M(2)	L(1)	
CO2	M(2)	M(2)	M(2)	M(2)	S(3)	
CO3	M(2)	L(1)	S(3)	S(3)	M(2)	
CO4	M(2)	S(3)	M(2)	S(3)	⁻ S(3)	
CO5	L(1)	S(3)	L(1)	S(3)	S(3)	
W.AV	2	2.4	2	2.6	2.4	

S-Strong (3) M- Medium (2) L-Low (1)

		SEMESTER-II						
DSE-2	Course code 557556	BLOCK CHAIN TECHNOLOGY	T	Credits: 3	Нои	ırs: 3		
UNIT I								
Objective 1	To understand	the basic concepts and components of bloc	kchaiı	1				
Fundamenta	ls of Blockchain:	Introduction - Origin of Blockchain - Block	chain S	Solution - Com	pone	nts of		
Blockchain -	Components of Blo	ckchain - Block in Blockchain - The Techno	logy a	nd the Future.				
Outcome 1	To know the fur	damental concepts and components of blo	ockcha	in.	I	K1		
		UNIT II						
Objective 2	To understand va	rious Blockchain types and Consensus Me	echani	sm.				
Blockchain	types and Consen	sus Mechanism: Introduction - Decentralization	ation a	nd Distribution	- Typ	pes of		
Blockchain -	- Consensus Protoc	col - Crypto currency - BITCOIN, ALTCO	IN and	1 TOKEN: Int	roduc	tion -		
Bitcoin and (Crypto currency Ba	sics - Types of Crypto currency – Crypto cur	rency	Usage.				
Outcome 2	Acquire knowled	ge about various blockchain types and Co	nsensu	s Mechanism.	-]	K2		
		UNIT III						
Objective 3	To study the con	cepts of public blockchain system.						
Public Blo	ockchain System:	Introduction - Public Blockchain - Popu	ılar Pu	ublic Blockcha	ains -	- The		
BitcoinCloo	BitcoinClockchain – EtherumBlockchain.							
Outcome 3	Students can ga	in knowledge about public blockchain sys	tem			K3		
		UNIT IV						
Objective 4	To explain abou	t the cha <mark>ra</mark> cter <mark>istics and v</mark> ario <mark>us</mark> block alg	orithn	ıs.				
Private Blo	ckchain System :	Introduction - Key Characteristics of Priva	te Bloo	ckchain - Why	v We	Need		
Private Blo	ckchain - Private E	Blockchain Examples - Private Blockchain a	nd Op	en Source - E-	Com	merce		
Site Examp	les - Various Comr	nands in E-Co <mark>m</mark> merce Blockchain - Smart C	ontract	t in Private Env	vironn	nent -		
State Machi	ine - Different Algo	orithms of Permissioned Blockchain - Byzant	ine Fa	ult – Multichai	n.			
Outcome 4	Learners can une	lerstand the characteristics and various b	ock al	gorithms.		K5		
		UNIT V						
Objective 5	To examine var	ous security aspects and major application	n area	s of blockchai	n			
Security in	Blockchain · Intr	oduction - Security Aspects in Bitcoin - Sec	urity a	nd Privacy Ch	alleno	ges of		
Blockchain	in General - Pe	formance and Scalability - Identity Man	ageme	int and Authe	nticat	tion -		
Regularity	Compliance and A	ssurance - Safeguarding Blockchain Smart	Contr	act - Security	Asne	cts in		
Hyper ledge	er Fabric Annlica	tions of Blockchain Blockchain in Bankir	o and	Finance - Blo	ckch	ain in		
Healthcare.	er ruene. rippneu	tions of Dioekenum.Dioekenum in Duikin	ig und	T manee Die	enem	#111 111		
Outcome 5	Learners gain	idea about security aspects and major	appl	ication areas	of			
	blockchain.		"PP-			K4		
Suggested Re	adings:-				1			
Chandrar	nouliSubramaniam	, Asha A George, Abhilash K A, MeeraKarth	nikeyar	n, Blockchain				
Technolo	Technology,2020, University Press							
Daniel D	Daniel DrescherBlockchain Basics, 2017: A Non-Technical Introduction, Academic Press.							
Debajani	Mohanty, 2018, Blo	ockchain from Concept to Execution, BPB						

Online Resource:								
https://www.buffalo.edu/content/dam/www/ubblockchain/files/basics/001%20What%20is%20Blockchai								
<u>n.pdf</u>	n.pdf							
https://www.shiksh	a.com/online-course	<u>s/articles/priva</u>	ate-blockchain/					
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create								
Course designed by: Dr.A.Pramila								

Course Outcome	VS	Programme	Outcomes
-----------------------	----	-----------	----------

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	M(2)	L(1)	M(2)	M(2)	L(1)	L(1)	M(2)	L(1)
CO2	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	L(1)	L(1)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	M(2)	M(2)	M(2)	S(3)
CO4	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)	S(3)
CO5	S(3)	S(3)	M(2)	S(3)	S(3)	M(2)	M(2)	M(2)	M(2)	S(3)
W. AV	3	3	2.4	2.2	2.8	2	1.6	1.6	2	2.6

S –Strong (3), M-Medium (2), L- Low (1)

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	M(2)	M(2)	M(2)
CO2	S(3)	S(3)	M(2)	M(2)	S(3)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	S(3)
CO5	S(3)	S(3)	S(3)	M(2)	S(3)
W. AV	2.8	2.8	2.6	2	2.8

Course Outcome VS Programme Specific Outcomes

S-Strong (3), M-Medium (2), L- Low (1)

		SEMESTER III			
Core: 13	Course Code	BIG DATA ANALYTICS	Т	Credits:4	Hours:4
	557301				
		Unit I			
Objectives 1	To understand B	Big Data and its analytics in the real world	1		
INTRODU	CTION TO BIG D	ATA ANALYTICS: Big Data Overvio	ew–Da	ata Structure	es Analyst
Perspective	on Data Repositories	- State of the Practice in Analytics – BI V	ersus	Data Science	e - Current
Analytical DataDiscov	Architecture – Drivery–DataPreparation M	vers of Big Data – BigDataEcosys lodel Planning–Model Building–Communio	tem-D cate R	ataAnalytics esults–Opera	Lifecycle– tionalize.
Outcomes 1	To understand the	building blocks of Big Data.			K1,K2
		Unit II			
Objectives 2	To process Big Dat	a to generate analytics.			
 RGraph StatisticsE Variable - Evaluation Power and 	nical User Interfaces- xploratoryData Analys - Examining MultipleV a:HypothesisTesting–Di Sample Size–ANOVA	- Data Import and Export Attribute is :VisualizationBeforeAnalysis–Dirty D VariablesDataExplorationVersus Presentation fferenceofMeans–WilcoxonRank-SumTest	and ata – on – –Type	DataTypes–I Visualizing Statistical M IandTypeIIE	Descriptive a Single Iethods of rrors–
Outcomes 2	To understand the s	pecialized aspects of big data with the h	ielp o	f different	K2
	big data applications		-		
	•	Unit III			
Objectives 3	To Develop clusteri user datasets.	ng techniques and association rules for	large	standard da	tasets and
ADVANC	ED METHODS: Adva	nced Analytical Theory and Methods: Clus	tering	–K-Means–U	Ise Cases -
Overview -	- Determining number	of clusters –Diagnostics Reasons to ch	oose	andcautions-	Additional
Algorithms	-Association Rules: A	A Priori Algorithm–Evaluation of Candi	idate	Rules Appli	cations of
Association Regression	n Rules–Validation and · _Use cases–Model D	Testing — Diagnostics. Regression: Lir	iear R	legression an Iodels	d Logistic
Outcomes 3	To know the rece	nt research areas related to Genetic A	lonri	thm. Man	K6
	Reduce and File Sv	stem.		ining ining	110
		Unit IV			
			1	1	
Objectives 4	Design classification	models for various standard datasets and	1 user	datasets.	
CLASSIFI	CATION : Decision	Trees – Overview–Genetic Algorithm	1- De	ecisionTreeA	lgorithms-
Evaluating	DecisionTree–Decision	ΓreesinR-Na'iveBayes –BayesThe	orem-	-NaïveBayes	Classifier-
Smoothing-	-Diagnostics-NaïveBay	es in R – Diagnosticsof Classifiers – Addi	tional	Classificatio	n Methods
-TimeSerie	s Analysis: Overview	– Box – Jenkins Methodology – ARI	IMA	Model-Auto	correlation
Function	– Autoregressive Mo	odels –MovingAverageModels –ARMA	and	ARIMA	Models –
Buildingan	dEvaluatingandARIMA	Model - IextAnalysis :TextAnalysi	sSteps	s–Example–C	Collecting-
Kepresentin	ng I ermFrequency–Cate	gorizing–DeterminingSentiments–Gaining	; Insig	nts.	176
Outcomes	datasets.	ication models for various standard da	itaset	s and user	Кб

Unit V								
Objectives	To analyze the H	Big Data framev	work like Hadoop					
ADVANCED A	NALYTICS - TE	CHNOLOGY	AND TOOLS:					
MapReduceand	Iadoop:Analyticsf	orUnstructuredI	DataUseCases-Ma	<i>pReduce</i> - Apache H	adoop – The			
Hadoop Ecosyste	em – pig – Hive –	Hbase – Manout	- NoSQL - Tools i	n Database Analytic	s : SQL			
Essentials– Joins	- Set operations -	 Grouping External 	ensions – In Databas	se Text Analysis- Ad	lvanced SQL –			
Windows Function	ons–User Defined	Functions and A	Aggregates-ordered	aggregates-MADiit	-Analytics			
Reports Consolic	lation–Communic	ating and operat	ionalizing and Ana	lytics Project–Creati	ng the Final			
Deliverables: De	veloping Core Ma	terial for Multip	ole Audiences–Proje	ect Goals–Main Find	lings - Approach			
Model Description	on – Key points su	pport with Data	- Model details –R	ecommendations-Da	ata			
Visualization.								
Outcomes	To apply Hade	oop ecosystem	components. To p	articipate data scie	ence K6			
	and big data ar	nalytics projects	S.					
Suggested Readi	ngs:							
AnilMaheshw	ari,2017 ,"Data A	Analytics ", Mc	-Graw Hill Educat	tion,				
JohnWiley&S	ons, 2015, Data S	Science & Big I	Data Analytics: Di	scovering,				
Analyzing, Vi	sualizing and Pre	esenting Data",	EMC Education S	ervices.				
Noreen Burlin	g game, 2012, "	The little book of	on Big Data", New	Street publishers,				
Norman Mat o	off, 2011, "The A	rt of R Program	nming: A Tour of	Statistical Software	Design", Starch			
Press, 1edition	۱,.							
SandipRakshi	t, , 2017 ,"R for H	Beginners", Mc-	-Graw Hill Educat	ion.				
Online Resources	:							
http://www.johndcook.com/R_language_for_programmers.html.								
http://bigdatauniversity.com/.								
K1-Remember	K2-Understand	K3-Apply	K4 <mark>-A</mark> nalyze	K5-Evaluate	K6-Create			
Course designed by: Dr.N.Geetha								

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M (2)	M (2)	M (2)	M (2)	S (3)	-	S(3)	M (2)	M (2)
CO2	S (3)	S(3)	S(3)	S(3)	S(3)	S (3)	-	S(3)	S(3)	M (2)
CO3	S (3)	-	S (3)	S (3)	M (2)					
CO4	S (3)	-	S (3)	S (3)	M (2)					
CO5	S (3)	-	S (3)	S (3)	M (2)					
W.AV.	3	2.8	2.8	2.8	2.8	3	-	3	2.8	2

Course Outcome Vs. Programme Outcomes

S-Strong(3), M-Medium(2), L-Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	M(2)	M(2)	M(2)
CO3	S(3)	S(3)	S(3)	M(2)	S(3)
CO4	S(3)	S(3)	S(3)	M(2)	S(3)
CO5	S(3)	S(3)	S(3)	M(2)	S(3)
W.AV.	2.6	2.6	2.6	2	2.6

Course Outcome Vs. Programme Specific Outcomes

S-Strong(3), M-Medium(2), L-Low(1)

		SEMESTER-III			
Core: 14	Course code	DATA VISUALIZATION	Т	Credits:4	Hours:4
	557302				
		Unit I			
Objective	1 To Understar	nd the introduction of data visu	alizati	on	
Introduc	tion to Data	Visualization: Acquiring and	Visual	izing Data,	Simultaneous
acquisitio	on and visualiza	tion, Applications of Data Vis	ualizati	on, Keys fa	ictors of Data
Visualiza	tion (Control o	f Presentation, Faster and Bette	er Javas	Script proce	ssing, Rise of
HTML5,	Lowering the in	nplementation Bar) Exploring th	e Visua	al Data Spec	trum: charting
Primitive	s (Data Points,	Line Charts, Bar Charts, Pie	Charts,	Area Char	ts), Exploring
advanced	Visualizations	(Candlestick Charts, Bubble Ch	arts, Su	rface Charts	s, Map Charts,
Infograph	nics). Making us	e of HIMLS CANVAS, Integrat	ing SV	U V	<u>(1 1/2)</u>
Outcome I	Summarize t	heintroduction of data visualize	ation	K	.1,K3
		UNIT II			
Objective 2	2 To Understar	nd the basic concepts of data fo	rmat a	nd how to v	isualizing
	data progran	ımatically			
Tables: I	Reading Data fro	om Standard text files (.txt, .csv,	XML)	, Displaying	JSON content
Outputtin	g Basic Table	Data (Building a table, Using	Semant	ic Table, Co	onfiguring the
columns)	, Assuring Ma	ximum readability (Styling yo	ur tabl	e, Increasin	ig readability,
Adding d	lynamic Highlig	hting), Including computations,	Using c	lata tables li	brary, relating
data table	e to a chart VIS	sualizing data Programmatica	Ily: Cr	eating HIM	L5 CANVAS
Charts (HIML5 Canva	as basics, Linear interpolatio	ns, A	Simple C	olumn Chart,
Animatio basia Dia	abart Working	with Chart Animations)	API Ba	asics, A bas	ic dar chart, A
Outcome 2	Understand t	he concents of tables data for	mat an	d how to K	3 KA
Outcome 2	visualizing th	am to programmatically	mat an		3,184
	visualizing th				
Objective [*]	3 To Understar	ad the concepts of D3 is	-		
Introduc	tion to D3.is:	Getting setup with D3. Making	select	ions, changi	ng selection's
attribute.	Loading and f	iltering External data : Buildin	g a gra	aphic that u	ses all of the
populatio	n distribution da	ata, Data formats you can use wi	th D3, (Creating a se	erver to upload
your data	, D3's function	for loading data, Dealing with	Asyncl	nronous requ	uests, Loading
and form	atting Large Dat	a Sets.	·	-	-
Outcome 3	Acquire know	wledge about how the D3.js v	vorked	in externa	l K2,K4
	data				
		Unit IV			1
Objective	4 To understan	dd the concepts of advanced da	ata visı	alization	
Advanced	l Data Visuali	zation: Making charts interact	ive and	Animated:	Data joins,
updates an	nd exits, interac	tive buttons, Updating charts, A	Adding	transactions	, using keys
Adding a	Play Button: wr	apping the update phase in a fu	nction,	Adding a P	lay button to
the page,N	Aaking the Play	button go, Allow the user to inter	rrupt th	e play, seque	ence
Outcome 4	Cultivate the	e knowledge about advanced d	ata]	K4,K5
	visualization				

Unit V
Objective 5 To acquire knowledge about information dashboard design
Information Dashboard Design: Introduction, Dashboard design issues and assessment
needs, Considerations for designing dashboard-visual perception, Achieving eloquenc
Advantages of Graphics Library of Graphs, Designing Bullet Graphs, Designin
Sparklines, Dashboard Display Media, Critical Design Practices, Putting it all together
Unveiling the dashboard.
Outcome 5 Understand and gain knowledge about how to design K5,K6
information dashboard
Suggested Readings:-
Jon Raasch, Graham Murray, VadimOgievetsky, Joseph Lowery, "JavaScript and jQuer
for Data Analysis and Visualization", WROX
Ritchie S. King, Visual story telling with D3" Pearson
Ben Fry, "Visualizing data: Exploring and explaining data with the processir
environment", O'Reilly, 2008.
A Julie Steele and Noah Iliinsky, Designing Data Visualizations: Representir
Informational Relationships, O'Relly
Andy Kirk, Data Visualization: A Successful Design Process, PAKT
Scott Murray, Interactive Data Visualization for Web, O'Relly
Nathan Yau, "Data Points: Visualization that means something", Wiley, 2013.
Tamara Munzner, Visualization Analysis and Design, AK Peters Visualization Serie
CRC Press, Nov. 2014
Online Resources:
https://library.carleton.ca/sites/default/files/help/Intro%20to%20Data%20Viz%20
016.pdf
https://data.vk.edu.ee/PowerBI/Opikud/Fundamentals_of_Data_Visualization.pdf

K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
			Cour	se Designed by	': Dr.L.Sathiya

Course Outcomes VsProgramme Outcomes

PO										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO										
CO1	M(2)	M(2)	M(2)	L(1)	M(2)	M(2)	M(2)	M(2)	S(3)	M(2)
CO2	M(2)	M(2)	M(2)	S(3)	S(3)	M(2)	M(2)	S(3)	S(3)	L(1)
CO3	S(3)	S(3)	M(2)	M(2)	L(1)	M(2)	M(2)	M(2)	S(3)	S(3)
CO4	M(2)	S(3)	L(1)	M(2)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)
CO5	L(1)	M(2)	S(3)	S(3)	M(2)	L(1)	L(1)	L(1)	S(3)	M(2)
W.AV	2	2.4	2	2.2	2.2	2	2	2	3	2

S-Strong (3) M- Medium (2) L-Low (1)

PSO CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	M(2)	L(1)
CO2	M(2)	M(2)	M(2)	M(2)	S(3)
CO3	M(2)	L(1)	S(3)	S(3)	M(2)
CO4	M(2)	S(3)	M(2)	S(3)	S(3)
CO5	L(1)	S(3)	L(1)	S(3)	S(3)
W.AV	2	2.4	2	2.6	2.4

Course Outcomes Vs Programme Specific Outcomes

S-Strong (3) M- Medium (2) L-Low (1)

		SEMESTER III						
Core: 15	Course code	VIRTUAL REALITY ANDAUGMENTED	Τ	Credits: 4	Hours: 4			
	557303	REALITY						
		Unit – I						
Objective	1 To make	students know the basic concept and framewo	ork o	f virtual real	ity.			
Introduction	Introduction of Virtual Reality: Fundamental Concept and Components of Virtual Reality. Primary							
Features an	nd Present Deve	elopment on Virtual Reality.						
Outcome 1	Students	gain knowledge about fundamental concepts o	f Vi	rtual Reality	K2			
		Unit II			I			
Objective	2 To make	a study of the principles and multidisciplinary	y fea	tures of virtu	al reality.			
Multiple M	Aodals of Inpu	it and Output Interface in Virtual Reality: Inj	put -	- Tracker, Ser	nsor, Digital			
Glove, Mo	vement Captur	e, Video-based Input, 3D Menus & 3DScanner et	c. O	utput Visua	1 / Auditory			
/ Haptic D	Devices. Visua	l Computation in Virtual Reality (4 hours):	Fu	ndamentals o	f Computer			
Graphics. S	Software and H	ardware Technology on Stereoscopic Display. A	dvai	nced Techniq	ues in CG:			
Manageme	nt of Large Sca	le Environments & Real Time Rendering.						
Outcome 2	2 Learner	s able to work in Virtual Reality System frame	worl	ζ.	K3			
		Unit III						
Objective .	3 To know	about environment modeling and iterative tec	hniq	ues in virtua	l reality.			
Environn	nent Modeling	in Virtual Reality: Geometric Modeling, Bel	havio	or Simulation	, Physically			
Based Sin	nulation. Inter	active Techniques in Virtual Reality: Body Tra	ck, ł	Hand Gesture,	3D Manus,			
Object Gr	asp							
Outcome 3	3 Students	gain knowledge about environment mod	delin	g and itera	tive K5			
	techniqu	es in virtual reality.						
Objective	A To impo	Unit IV		antad Daalit				
Trata da ati		rt knowledge about fundamental concepts of A	ugn		/• -1			
	on of Augmen	red Reality (AR): System Structure of Augmented	tion	and Davaland	chnology in			
AR, Augm	ented City Ma	ps, Geo Location in AR Technology, Customiza	tion	and Develop	nent of AK			
				C 4				
Outcome	4 Students	gain knowledge about fundamental conc	epts	of Augme	ated K3			
	Keanty.	Unit V						
Objective	5 To know	Unit v	ماد م	nd framawar	lze.			
Developme	ent Tools and	Frameworks in Virtual Reality: Framework	uis a	Software D	evelonment			
Tools in	VR X3D St	andard: Vega MultiGen Virtools etc. Ann	licati	ion of VR	in Digital			
Entertainn	nent: VR Tech	nology in Film & TV Production. VR Technology	ogy i	n Physical Ex	vercises and			
Games. De	monstration of	Digital Entertainment by VR.	- (8					
Outcome	5 Learner	s now and able to work virtual reality de	velo	oment tools	and K6			
	framewo	orks.		•				
Suggested	l Readings:				I			
Burdea	, G. C. and P. C	Coffet. 2003/2006, Virtual Reality Technology, Se	econd	l Edition. Wil	ey-			
IEEE P	ress.				-			
Fei GA	O, 2006, Desig	n and Development of Virtual Reality Applicatio	n Sys	stem, Tsinghu	a			

Press, March 2012.								
Guangran LIU. 2011, Virtual Reality Technology, Tsinghua Press, Jan.								
Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India.								
Sherman, Will	iam R. and Alan B.	Craig. 2002, U1	nderstanding Virt	ual Reality – Inter	face,			
Application, an	nd Design, Morgan H	Kaufmann.						
Online Resources	S:							
https://www.lncc	<u>.br/~jauvane/paper</u>	<u>s/RelatorioTec</u>	nicoLNCC-0603	<u>8.pdf</u>				
https://avida.cs.w	right.edu/courses/C	CEG3500/CEC	<u> 3500 0.pdf</u>					
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create			
Course Designed by: Dr.A.Pramila								

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	M(2)	M(2)	S(3)	M(2)	S(3)	L(1)	S(3)	S(3)
CO2	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	M(2)	S(3)	S(3)
CO3	M(2)	S(3)	S(3)	M(2)	L(1)	M(2)	S(3)	M(2)	S(3)	M(2)
CO4	S(3)	M(2)	S(3)	S(3)	S(3)	L(1)	M(2)	S(3)	S(3)	S(3)
CO5	S(3)	M(2)	M(2)	M(2)	S(3)	M(2)	S(3)	S(3)	M(2)	M(2)
W. AV	2.8	2.6	2.6	2.4	2.6	2	2.6	2.2	2.8	2.4

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M (2)	M (2)	M (2)	M (2)
CO2	S(3)	S(3)	S(3)	M (2)	S(3)
CO3	S(3)	S(3)	M (2)	M (2)	M (2)
CO4	S(3)	M (2)	M (2)	M (2)	S(3)
CO5	M (2)	S(3)	S(3)	S(3)	S(3)
W.AV	2.8	2.6	2.4	2.2	2.6

S-Strong (3), M-Medium (2), L- Low (1)

		SEMESTER – III				
Core: 16	Course code	INTERNET OF THINGS	T	Credits: 4	Hou	rs: 4
	557304					
	1	Unit – I				
Objective 1	To study the fu	ndamental concepts of Internet of Thin	gs.			
INTRODUC	TION TO IoT:	Internet of Things - Physical Design-1	Logic	al Design- Ic	oT En	abling
Technologies	- IoT Levels &	Deployment Templates - Domain Specif	ïc Io	Ts - IoT and	M2M	- IoT
System Mana	gement with NET	CONF-YANG- IoT Platforms Design Me	ethod	ology.		
Outcome 1	Students can un	derstand the fundamental concepts of I	nter	net of Things	•	K2
	1	Unit II				
Objective 2	Students to leas	rn about the basics of IoT protocols.				
IoT ARCHI	TECTURE: M2	M high-level ETSI architecture - IETF	arcl	nitecture for	IoT -	OGC
architecture -	· IoT reference	model - Domain model - information	mod	lel - function	nal mo	odel -
communicatio	on model - IoT ret	ference architecture.				
Outcome 2	Lerner's can D	evelop web services to access/control Io	T de	vices.		K4
	1	Unit III				
Objective 3	Students to bui	ld a small low cost embedded system us	ing I	Raspberry Pi		
IoT PROTO	COLS: Protocol	Standardization for IoT – Efforts – M2M	and V	WSN Protocol	s - SC	CADA
and RFID Pr	otocols – Unified	1 Data Standards – Protocols – IEEE 80	02.15	.4 – BACNet	Prote	ocol –
Modbus-Zig	bee Architecture -	- Network layer – 6LowPAN - CoAP – Se	ecurit	y.		
Outcome 3	Students can b	uild a small low cost embedded system t	using	Raspberry F	Pi.	K4
		Unit IV				
Objective 4	To apply the co	encept of Internet of Things in the real v	vorle	l scenario.		
BUILDING	IoT WITH RAS	PBERRY PI & ARDUINO: Building I	OT V	with RASPER	RY P	'I- IoT
Systems - Lo	gical Design usir	ng Python – IoT Physical Devices & End	lpoin	ts - IoT Devid	ce -Bu	uilding
blocks -Rasp	berry Pi -Board	- Linux on Raspberry Pi - Raspberry	7 Pi	Interfaces -P	rogran	nming
Raspberry Pi	with Python - Oth	er IoT Platforms - Arduino.				
Outcome 4	Students know	to apply the concept of Internet of Th	ings	in the real w	orld	K2
	scenario.					
Objective 5	To know the re	al world applications of IoT	1			•
CASE STU	DIES AND RE	AL-WORLD APPLICATIONS: Rea	u wo	orld design c	onstra	unts -
Applications	- Asset managem	ent, Industrial automation, smart grid, Co	mme	rcial building	auton	hation,
Smart cities -	participatory sen	sing - Data Analytics for 101 – Software	& N	lanagement 1	OOIS I	or lo l
Cloud Storage		nunication APIs - Cloud for 101 - Amazon	n we		101.	175
Outcome 5	Learners can a	nalyze applications of 101 in real time s	scena	r10.		K3
Suggested Ke	cauings:- Dahaa Viiay Ma	digetti 2015 "Internet of Things: A her	da a	n annraach"	Univo	raition
Press	Daliga, vijay Ivia	disetti, 2015, internet of Things. A har	105-0	n approach ,	Unive	1511105
Dieter Uc	kelmann Mark H	Iarrison Michahelles Florian (Eds) 201	1 "A	rchitecting the	- Inter	met of
Things" S	Springer	arrison, michailenes, Florian (Lus), 201	., 11	tomooting the		
Honbo Zh	ou. 2012. "The Ir	nternet of Things in the Cloud: A Middlew	are F	Perspective" (CRC P	ress.
Jan Ho" 11	er, VlasiosTsiatsi	s, Catherine Mulligan, Stamatis, Karnous	skos.	Stefan Aves a	ind. D	avid
	,	· · · · · · · · · · · · · · · · · · ·	,			

Boyle, 2014, "From Machine-to-Machine to the Internet of Things - Introduction to a New Age of Intelligence", Elsevier.

Olivier Hersent, David Boswarthick, Omar Elloumi, 2012, "The Internet of Things – Key applications and Protocols", Wiley.

Online Resources:								
https://methodist.edu.in/web/uploads/files/DR%20jwc%20IOT.pdf								
https://www.researchgate.net/profile/Mohamed-Fezari-								
2/publication/33	30513589 Internet	of Things IO	T Using Raspb	erry Pi/links/5c4	581d892851c22			
a384a44b/Inter	net-of-Things-IOT-	Using-Raspbe	rry-Pi.pdf					
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create								
Course Designed by: Dr.A.Pramila								

Course Outcome VS Programme Outcomes

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	L(1)	M(2)	L(1)	S(3)	L(1)	M(2)	L (1)	L (1)
CO2	L (1)	L (1)	M (2)	L (1)	L (1)	S(3)	L(1)	M(2)	L (1)	L (1)
CO3	M(2)	M (2)	L(1)	L (1)	M(2)	S(3)	M (2)	M(2)	M(2)	L (1)
CO4	M(2)	M (2)	M (2)	L (1)	M(2)	S(3)	M (2)	M(2)	M(2)	L (1)
CO5	L(1)	L (1)	- 8	L (1)	M(2)	S(3)	M (2)	M(2)	M(2)	L (1)
W. AV	1.8	1.6	1.2	1.2	1.6	3	1.6	2	1.6	1

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S (3)	S (3)	M (2)	L (1)	L (1)
CO2	M (2)				
CO3	M (2)	M (2)	M (2)	L (1)	M (2)
CO4	M (2)	L (1)	M (2)	S (3)	M (2)
CO5	M (2)	L (1)	M (2)	S (3)	M (2)
W.AV	2	1.8	2	2	1.8

S –Strong (3), M-Medium (2), L- Low (1)

			SEMI	ESTER	- III				
Core: 17	Course code 557305	e LAB	I: BIG D	ATA A	NALYTIC	CS LAB	T	Credits:2	Hours:4
Objectives:		1					•		
• Get far	niliar with Ha	doop distri	butions, co	onfigur	ing Hadoop	and perf	forming	File manage	ment tasks
 Expering 	ment MapRed	uce in Had	oop frame	works					
• Implem	nent MapRedu	ice progran	ns in varic	ous app	lications				
• Explore	e MapReduce	support for	r debuggir	ıg					
• Unders	stand different	approache	s for build	ling Ha	doopMapRo	educe pro	ograms	for real-time	applications
Experi	ments								
 Install Apac 	he Hadoop								
2. Develop a N	/lapReduce pro	ogram to ca	alculate th	e frequ	ency of a gi	ven word	1 in agiv	ven file.	
3. Develop a N	/lapReduce pro	ogram to fi	nd the ma	ximum	temperatur	e in each	year.		
4. Develop a N	/lapReduce pro	ogram to fi	nd the gra	des of	student's.				
5. Develop a N	/lapReduce pro	ogram to in	nplement	Matrix	Multiplicat	ion.			
6. Develop a N	/lapReduce to	find the ma	aximum e	lectrica	l consumpti	on in eac	h year g	given electric	cal
consumption f	or each month	1 in each ye	ar.						
7. Develop a N	/lapReduce to	70nalyse w	eather da	ta set a	nd print who	ether the	day is s	hinny or coo	l day.
8. Develop a N	MapReduce pr	ogram to fi	nd the nu	mber of	f products so	old in eac	ch coun	try by consid	lering sales
data containing	g fields like								
Tranction P	rod Pri Pay	ment Na	Ci St	Cou	Account	Last L	Latit	Longi	
_Date u	ct ce _Ty	pe me	ty ate	ntry	Created	ogin	ude	tude	
0 D 1						1	:	10	
9. Develop a M	MapReduce pr	ogram to r	ind the ta	gs asso	clated with	each mo	vie by /	onaryse / 0g	movie iens
10 VV7 com	is on online m	nucio webci	to where	ucore li	stop to vori	and track	s the de	ta gete colle	oted which
is given below		iusic websi	te where	users II	stell to valid	Jus liack	s, the da	ita gets cone	cieu willen
The data is con	ming in log fil	es and look	s like as s	shown l	relow				
	ining in log in	es and look	.5 me d5 e						
UserId	Tra	ickId	S	hared	Radio	o	Skip		
						w.	0		
111115	222	2	0	10 - J		4	0		
111115	222	2		, i	1	1	1		
111115	225	5	1		0	1	0		
	0.0								
Write a Map R	Leduce program	m to get the	e followin	g:					
• Number of u	nique listeners	S							
 Number of ti 	mes the track	was shared	with othe	ers					
 Number of ti 	imes the track	was listene	d to on th	e radio					
 Number of ti 	mes the track	was listene	ed to in to	tal					
 Number of ti 	mes the track	was skippe	d on the r	adio					
15. Devel	lop a MapRec	luce progra	um to find	d the fi	requency of	books p	oublishe	d eachyear a	and find in

Title	Author	Published	Author	Language	No of pages
-------	--------	-----------	--------	----------	-------------

16. Develop a MapReduce program to 71 nalyse Titanic ship data and to find the average age of the people (both male and female) who died in the tragedy. How many persons are survived in each class.

The titanic data will be	
Column 1 :PassengerI d	Column 2 : Survived (survived=0 &died=1)
Column 3 :Pelass	Column 4 : Name
Column 5 : Sex	Column 6 : Age
Column 7 :SibSp	Column 8 :Parch
Column 9 : Ticket	Column 10 : Fare
Column 11 :Cabin	Column 12 : Embarked

13. Develop a MapReduce program to 71nalyseUber data set to find the days on which each basement has more trips using the following dataset. The Uber dataset consists of four columns they are

dispatching_base_number	date	active_vehicles	trips

14. Develop a program to calculate the maximum recorded temperature by yearwise for the weather dataset in Pig Latin

15. Write queries to sort and aggregate the data in a table using HiveQL.

16. Develop a Java application to find the maximum temperature using Spark.

Outcomes: Upon completion of the course, the students should be able to:

- Configure Hadoop and perform File Management Tasks (L2)
- Apply MapReduce programs to real time issues like word count, weather dataset and sales of a company (L3)
- Critically 71 nalyse huge data set using Hadoop distributed file systems and MapReduce (L5)
- Apply different data processing tools like Pig, Hive and Spark.(L6)

Online Resource:

https://vemu.org/uploads/lecture_notes/22_12_2022_182935242.pdf https://www.slideshare.net/nithyakumaravel/bigdata-analytics-lab-manual-finalpdf

Course designed by:Dr.N.Geetha

Course Outcome Vs. Programme Outcomes

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M(2)	M (2)	M (2)	M (2)	M (2)	S (3)	-	S(3)	M (2)	M (2)
CO2	S (3)	S(3)	S(3)	S(3)	S(3)	S (3)	-	S(3)	M(2)	M (2)
CO3	S (3)	-	S (3)	S (3)	M (2)					
CO4	S (3)	-	S (3)	M(2)	M (2)					
CO5	S (3)	-	S (3)	S (3)	M (2)					
W.AV.	2.8	2.8	2.8	2.8	2.8	3	-	3	2.4	2

Strong(3), M-Medium(2), L-Low(1)

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	M(2)	M(2)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	M(2)	M(2)	M(2)
CO3	S(3)	S(3)	S(3)	S(3)	S(3)
CO4	M(2)	M(2)	M(2)	M(2)	M(2)
CO5	S(3)	S(3)	S(3)	M(2)	S(3)
W.AV.	2.6	2.6	2.6	2.2	2.6

Course Outcome Vs. Programme Specific Outcomes

S-Strong(3), M-Medium(2), L-Low(1)

		SEMESTER III									
Core:18	Course Code	LAB II: INT	TERNET OF	P	Credits:2	Hours: 4					
	557306	THING	S LAB								
Objectives :	• To und	lerstand the sense	ors and actuators f	or an	IoT application	ion					
	• To und	lerstand the proto	cols for a specific	: IoT	application.						
	To util	ize the cloud plat	form and APIs fo	r IoT	application.						
	To app	oly embedded boa	rds for creating Io	oT pr	ototypes.						
	• To des	ign solution for a	given IoT applica	ation	•						
LIST OF E	EXPERIMENTS										
1. Te	mperature and Hun	nidity									
2. Lig	ght control with LD	R									
3. Но	me Automation										
4. See	curity Alarm System	n									
5. So	il Moisture Monito	ring									
6. Srr	nart Door Lock										
7. We	eather Station										
8. Ve	hicle Tracking syst	em									
9. Sr	hart Irrigation Syste	m									
10. G	as Leakage Detect	or	Les by								
11. П 12 с	ealth Monitoring	Control									
12. 5	mart Garbage Bin	Control									
13. S.	llian Garbage Bill Jater Quality Monit	toring									
14. W	ome Energy Monit	oring									
Outcomes:	At the end of the	course, students y	vill be able to								
	• Choose the sense	sors and actuators	for an IoT applic	ation	(L1)						
	Select protocols	for a specific Io	Γ application (L2)		(21)						
	• Utilize the cloud	d platform and Al	Pls for IoT applic:	ation	(1.3)						
	• Experiment wit	h embedded boar	ds for creating Io	[pro	totypes (L3)						
	Design a solution	on for a given IoT	application (L6)	r pro							
Online	https://mlritm.ac.	in/assets/cse/cse	lab manuals/R20	cse	manuals/IOT	%20lab%20					
Resource:	Manual.pdf										
	https://www.ucpe	sbam.in/public/ir	nages/lab manual	s_pd	f/IOT%20Lal	b%20Manual					
	%20(1) compress	sed.pdf									
K1-Remembe	r K2-Understan	d K3-Apply	K4-Analyze	K5	-Evaluate	K6-Create					
<u> </u>	1	I	Cou	rse d	esigned by: I	Dr.A.Pramila					

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	M(2)	M(2)	M(2)	M(2)	L(1)	M(2)	-	S(2)	L(1)
CO2	M(2)	S(3)	S(3)	M(2)	L(1)	M(2)	-	-	M(2)	M(2)
CO3	M(2)	S(3)	M(2)	L(1)	L(1)	M(2)	M(2)	L(1)	L(1)	L(1)
CO4	M(2)	M(2)	S(3)	M(2)	M(2)	L(1)	-	M(2)	M(2)	S(2)
CO5	M(2)	M(2)	L(1)	L(1)	L(1)	L(1)	S(3)	M(2)	L(1)	L(1)
W. AV	2.4	2.2	2	1.4	1.4	1	2	1.7	2	1.2

Course Outcome VS Programme Outcomes

S –Strong (3), M-Medium (2), L- Low (1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	M(2)	M(2)	M(2)	M(2)
CO2	M(2)	M(2)	S(3)	S(3)	M(2)
CO3	S(3)	M(2)	L(1)	M(2)	M(2)
CO4	M(2)	L(1)	M(2)	L(1)	L(1)
CO5	M(2)	M(2)	L(1)	M(2)	L(1)
W. AV	2.4	2	1.6	1.8	1.6

S-Strong (3), **M-Medium** (2), **L**- Low (1)

			SEMI	ESTER	-III				
DSE-3	Cou	irse code	NATURAL LA	NGUA	AGE	Т	Credits:	3	Hours: 3
	5	57557	PROCES	SING					
			1	Unit I					
Objectiv	ve 1	To unders	stand the basic term	inology	and theo	ry un	derlying	natu	ral language
		processing	5						
Introd	luctio	n: Need	for processing of	natural	language	s, La	nguage p	proces	ssing levels,
Applic	ation	s of NLP, A	Ambiguity and uncerta	inty in	language, H	Regula	r Express	ions,	NLP tasks in
syntax	, sem	antics and	pragmatics, Machine	Transl	ation, Intro	ductio	on to Finit	te Sta	ate Automata
and Re	egulaı	expression	ns, Introduction to For	mal lan	guages and	Conte	ext- free g	ramm	nars.
Outcom	e 1	Learners	s understand basic m	athema	atical mode	els of 1	regular	K1	
		expressi	on, NLP problems the	at can l	be solved b	y con	puters.		
		1	U	NIT II					
Objectiv	ve 2	To Under	stand approaches inf	lection	al and der	ivatio	nal morp	holog	gy and finite
		state trans	sducers	056	0.00				
Morp	holog	ical Proce	essing: Introduction to	o Corpu	ıs, Tokeniz	ation	,Stemmin	g, Le	emmatization
Inflect	ional	and Deriv	ational morphology, 1	Morpho	ological par	sing,	Finite stat	te tra	nsducers, N-
gram l	angua	age models	, practical illustrations	with N	LTK,Pytho	on3, T	extual sou	rces,	APIs, Social
Media	and	Web Scrap	ping, practical illustra	tions v	vith NLTK	,Pytho	on3, Textu	ial so	ources, APIs,
Social	Medi	ia and Web	Scraping.	7	N. 1		1		
Outcom	e 2	Students of	can understand morp	hologi	cal process	ing a	nd their	K3	
		models ar	nd the necessary mat	themati	ical techni	ques 1	to prove		
		more adv	anced applications of	these i	nodels.				
			U	nit III	110		10		
Objectiv	ve 3	To under	stand approaches to	o part	of speech	tagg	ing, pars	ing	syntax and
		semantics	in NLP.	*		1			
Part-o	of-Spe	eech Taggi	ng: Corpus, Tokeniza	tion,St	emming, Le	emma	tization, st	opwo	ords and Text
Featur	es, V	Word Clas	sses, Part-of-speech	tagging	g, Tagsets	, R	ule-based	, Sto	ochastic and
Transf	orma	tion based	POS tagging, TF-IDF	Classifi	cation, Hid	den M	farkov Mo	dels.	
Outcom	e 3	Beginners	s know about the ba	isic co	ncepts of j	part o	of speech	K	4,K1
		tagging ar	nd their models.						
			t	InitIV					
Objectiv	ve 4	To Und	erstand approaches	s to	discourse	, ge	neration,	dia	alogue and
		summariz	ation within NLP.						
Parsing	g: Ba	sic parsing	strategies, Parsing with	h conte	xt-free gran	nmars	s, Earley a	lgori	thm, Finite-
state pa	rsing	methods, U	Unification of feature s	structur	es, Non-pro	babili	stic Parsin	ıg	
Outcom	e 4	Beginner	s know theconceptor	' parsir	g and non	-prob	abilistic	K2	2,K5
		parsing							

		U	nitV		
Objective 5	ToUnderstand curr	ent methods	for statistical a	pproaches to Sei	mantic Analysis
Semantic A	nalysis: Lexical Se	mantics, Lexe	emes, Relations	among lexemes	and their senses,
WordNet, W	Vord Sense Disambig	guation. Pragi	matics: Discours	se, Discourse stru	icture. Dialogue -
Acts, struct	are, conversational ag	gents.			
Outcome 5	Students gain know	vledge about	to how to app	ly approaches	K5
	to discourse, gener	ation, dialog	ue and summa	ization within	
	NLP				
Suggested Re	eadings:-				
D. Jurafsk	y and J. H. Martin, '	Speech and I	Language Proces	ssing: An Introdu	ction to Natural
Language	Processing, Comp	utational Lir	nguistics, and	Speech Recogn	ition", Pearson
Education,	2008.				
J. Allen , "	Natural Language Ui	nderstanding"	, Addison Wesle	ey,2007.	
J. Handke	, "The Structure of	the Lexicon	n: Human Vers	us Machine (Na	atural Language
Processing)", Mouton de Gruyt	er,1995.			
Natural La	nguage Processing -	A Paninian I	Perspective by A	ksharBharathi, V	/ineetChaitanya,
Rajeev Sar	ngal		INNEDEITY		
Online Resou	irce:	- enversation ener	WITH ALL POINT	6:	
https://www.	london.ac.uk/sites/	default/files/	study-guides/in	ntroduction-to-	<u>natural-</u>
language-pro	ocessing.pdf				
https://mediu	<u>ım.com/mlearning-</u>	-ai/nlp-token	ization-stemm	ing-lemmatizat	<u>ion-and-part-</u>
of-speech-tag	ging-9088ac068768	<u>8</u>			
K1-Remembe	r K2-Unde <mark>rstan</mark> d	K3-Apply	K4-Analyze	K5-Evaluate	K6-Create
	9		Cour	se Designed by:	Dr.A.Nagarajan
L				7	

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	L(1)	S(3)	S(3)
CO2	S(3)	M(2)	S(3)	L(1)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)
CO4	S(3)	S(3)	L(1)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)
W.AV	3	2.8	2.4	2.4	2.8	2.8	2.8	2.6	2.8	2.8

Course Outcome VS Programme Outcomes

S-Strong(3),M-Medium(2),L-Low(1)

Course Outcome VS Programme Specific Outcomes

CO	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	S(3)	S(3)	M(2)	S(3)	S(3)						
CO2	S(3)	L(1)	S(3)	S(3)	M(2)						
CO3	S(3)	M(2)	S(3)	S(3)	S(3)						
CO4	S(3)	M(2)	S(3)	S (3)	L(1)						
CO5	S (3)	S(3)	S(3)	S(3)	S(3)						
W.AV	3	2.2	2.8	3	2.4						

S-Strong(3),M-Medium(2),L-Low(1)

Contraction profit

	SEMESTER – III								
DSE -3	Course code	THEORY OF COMPUTATIO	N T Credits:3 Hour	·s:3					
	557558								
	·	Unit–I							
Objective1	To study foundat	ional areas of computer science	e namely the basic mathemat	ical					
	models of comput	ation, problems that can be solve	ed by computers.						
Review of Mathematical Theory: Sets, Functions, Logical statements, Proofs, Relations,									
Languages, Principal of Mathematical Induction, Strong Principle, Recursive Definitions, Structural									
Induction. R	egular Languages	and Finite Automata: Regular	Expressions, Regular Languag	ges,					
Application of	of Finite Automata,	Automata with output - Moore n	nachine & Mealy machine, Fir	nite					
Automata, M	emory requirement	in a recognizer, Definitions, unio	n- intersection and complement	t of					
regular langu	lages, Non Determ	ninistic Finite Automata, Conver	sion from NFA to FA, $^{-}$ - N	lon					
Deterministic	Finite Automata, G	Conversion of NFA- ^ to NFA, K	leene's Theorem, Minimization	of					
Finite automa	ata, Regular And No	on Regular Languages – pumping	lemma						
Outcome1	Learners unders	tand basic mathematical model	s of computation, problems	K1					
	that can be solve	that can be solved by computers.							
		Unit II							
Objective2	To introduces b	asic computation models, the	ir properties and the neces	sary					
Ū	mathematical techniques to prove more advanced attributes of these models.								
Context free	grammar (CFG):	Definitions and Examples, Union	ns Concatenations And Kleene'	s of					
Context free	language, Regula	r Grammar for Regular Langu	age, Derivations and Ambigu	uity,					
Unambiguou	s CFG and Algebr	aic Expressions, BacosNaur For	rm (BNF), Normal Form – C	NF.					
Pushdown A	utomata, CFL And	NCFL: Definitions, Determinist	ic PDA, Equivalence of CFG	and					
PDA & Conv	version, Pumping ler	nma f <mark>or</mark> CFL <mark>, Intersecti</mark> ons and Co	omplements of CFL, Non-CFL.						
Outcome 2	Students can att	end basic computation models	, their properties and the	K3					
	necessary mather	natical techniques to prove m	ore advanced attributes of						
	these models.								
		Unit III							
Objective3	Tounderstandtheo	conceptof turning machine and	context sensitive languages.						
Turing Mac	chine (TM): TM	Definition, Model of Computation	on, Turing Machine as Langu	lage					
Acceptor, TN	A that Compute Par	tial Function, Church Turning Th	esis, Combining TM, Variation	s of					
TM, Non D	eterministic TM,	Universal TM, Recursively and	Enumerable Languages, Con	text					
sensitive lang	uages and Chomsk	y hierarchy.							
Outcome3	Beginners know a	bout the basic concepts of turning	ng machine context sensitive	K4					
	languages.	_							
		Unit IV							
Objective4	Tounderstandthe	conceptofbasiccomputable funct	tions and recursive functions.						
Computable	Functions: Partia	al - Total - Constant Functions	s, Primitive Recursive Function	ons,					
Bounded Min	neralization, Regula	r function, Recursive Functions, (Quantification, Minimalization,	and					
µ-Recursive	Functions, All Com	putable Functions Are µ- Recursiv	e.						
Outcome 4	Beginners know	theconceptofbasiccomputable	functions and recursive	K2					
	functions.								

UnitV						
Objective5 To develop non recursive enumerable language and context free language.						
A Language That Can't Be Accepted, and a Problem That Can't Be Decided, Non Recursiv	ve					
Enumerable (RE) Language - Undecidable Problem with RE - Undecidable Problems about TM	_					
Undecidable Problems Involving Context-Free Languages, Post's Correspondence Problem, Th	ıe					
Class P and NP.						
Outcome 5 Students gain knowledge non recursive enumerable language and context free k	ζ5					
language.						
Suggested Readings:-						
Introduction to Languages and the Theory of Computation, 4 th by John Martin, Tata McGraw Hill						
An introduction to automata theory and formal languages By Adesh K. Pandey, Publisher: S.K.						
Kataria& Sons.						
Introduction to computer theory By Deniel I. Cohen, Joh Wiley & Sons, Inc						
Computation: Finite and Infinite By Marvin L. Minsky Prentice-Hall						
Compiler Design By Alfred V Aho, Addison Weslley.						
Introduction to the Theory of Computation By Michael Sipser.						
Automata Theory, Languages, and Computation By John Hopcroft, Rajeev Motowani, and Jeffrey						
Ullman						
Online Resource:						
https://www.math.toronto.edu/weiss/set_theory.pdf						
https://www.univ-orleans.fr/lifo/Members/Mirian.Halfeld/Cours/TLComp/l3-CFG.pdf						
K1-Remember K2-Understand K3-Apply K4-Analyze K5-Evaluate K6-Create						
Course Designed by: Dr.P.Eswar	an					

CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	L(1)	S(3)	S(3)
CO2	S(3)	M(2)	S(3)	L(1)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)
CO3	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)
CO4	S(3)	S(3)	L(1)	S(3)	S(3)	M(2)	S(3)	S(3)	S(3)	S(3)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)	S(3)	M(2)	S(3)	M(2)	S(3)
W.AV	3	2.8	2.4	2.4	2.8	2.8	2.8	2.6	2.8	2.8

CourseOutcomeVSProgrammeOutcomes

S-Strong(3),M-Medium(2),L-Low(1) CourseOutcomeVSProgrammeSpecificOutcomes

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S(3)	S(3)	M(2)	S(3)	S(3)
CO2	S(3)	L(1)	S(3)	S(3)	M(2)
CO3	S(3)	M(2)	S(3)	S(3)	S(3)
CO4	S(3)	M(2)	S(3)	S(3)	L(1)
CO5	S(3)	S(3)	S(3)	S(3)	S(3)
W.AV	3	2.2	2.8	3	2.4

S-Strong(3),M-Medium(2),L-Low(1)

SEMESTER-III								
DSE-3	Course code	SOCIAL MEDIA ANALYTICS	Т	Credits: 3	Hours	s: 3		
	22/222	TT */ T						
	T							
Objective 1	To provide ba	sic understanding of the use and depl-	oyme	nt of Digital m	arketin	g		
Social Media	R Analytics I	ntroduction to Social Media Social	media	landscape S	ocial M	[edia		
Analytics & its	a Analytics. I	Small and large organizations: Applies	nicula ation	of SMA in diff	Foront su			
media platforms Introduction to Web Analytics: Definition Process Key terms: Site references								
Keywords and k	Kev phrases: bui	ding block terms: Visit characterization	n term	s. Content cha	racteriza	ation		
terms, Conversio	on metrics; Cate	gories: Offsite web, on site web; Web a	inalyti	ics platform, W	eb anal	ytics		
evolution, Need	of web analytics	, Advantages & Limitations.	•		·	-		
Outcome 1 Students can understand the use and deployment of Digital marketing tools K2								
	and web/socia	l/mobile analytics platforms.			-			
	1	Unit II						
Objective 2	Students to lea	arn about the network fundamentals a	and ja	wa script tags.				
Network funda	mentals: The so	ocial networks perspective - nodes, ties	and i	nfluencers, Soc	ial netw	vork,		
web data and m	ethods. Data Co	ollection and Web Analytics Fundamen	tals:	Capturing Data	: Web]	logs,		
web Beacons, ja	ava script tags,	packet sniffing; Outcome data: E-com	merce	e, Lead genera	tion, Br	and/		
Advocacy and s	support; Compet	itive Data: Panel Based measurement,	ISP b	ased measuren	ient, Se	arch		
Engine Data; C	Organizational S	tructure. Type and size of data, ider	ntifyin	ig unique page	e defini	tion,		
cookies, Link Co	oding Issues.							
Outcome 2	Lerner's can u	inderstand the network fundamentals	s and	java script tag	s.	K4		
		Unit III						
Objective 3	To build web	analytics and business implication.						
Web Metrics &	Analytics: Con	nmon metrics: Hits, Page views, visi	ts, un	ique page viev	vs, Bou	ince,		
Bounce rate &	its improvement	, Average time on site, Real time repo	ort, tra	affic source rep	ort, cus	stom		
campaigns, con	itent report, G	bogle analytics; Key Performance I	ndicat	tor: Need, ch	aracteris	stics,		
perspective and	uses. Graphs a	ind Matrices- Basic measures for ind	ividua	ls and network	s. Ran	dom		
graphs & netwo	ork evolution, So	ocial Context: Affiliation & Identity W	/eb ai	nalytics tools:	A/B tes	tıng,		
online surveys,	Web crawling a	and Indexing. Natural Language Proce	ssing	Techniques for	: Micro	-text		
Analysis			1.			TZA		
Outcome 3	Students can d	levelop web analytics and business im	plica	tions.		K4		
Objective 4	To propose th	Unit IV	Wah	Analysta nyafa	acional			
Objective 4	10 prepare in	e students with growth potentials for	web.	Analysis prote	Boach	s.		
Facebook Alla	lycics: Introduct	ormance on EB: Social Compaignes:	Zing j Goole	and evaluating		anu		
Measuring and	analyzing social	campaigns Social Network Analysis 1	ika In	and evaluating	r Linke	nies, adIn		
YouTube etc.	AdWords Renal	marking Categories of traffic Organ	nic tr	affic Paid traf	fic: Go	ogle		
Analytics Brief	f introduction	nd working Google website optimiz	er Ir	nnlementation	technol	ogu		
Limitations. Per	formance concer	ns. Privacy issues.	, 11	In promontation		-6J,		
Outcome 4	Students knov	v to develop web applications for curr	ent tr	ends.		K2		
-		1 11				1		

		Unit	V			
Objective 5	To know the real w	orld application	ons of web met	rics and web an	alytics thro	ugh
	different social media	a				
Qualitative Ana	lysis: Heuristic evalu	ations: Conduc	cting a heuristic	evaluation, Bene	fits of heur	istic
evaluations; Site	Visits: Conducting a s	site visit, Bene	fits of site visits;	Surveys: Websit	e surveys, H	ost-
visit surveys, crea	ating and running a sur	vey, Benefits c	of surveys. Web a	nalytics 2.0: Web	analytics 1	.0 &
its limitations, In	troduction to WA 2.0,	competitive int	elligence analysi	s and data sources	s; website tra	affic
analysis: traffic tr	ends, site overlap and	opportunities.				
Outcome 5	Learners can analyz	e the web me	trics and web a	nalytics through	different	K5
	social media.					
Suggested Read	lings:					
RobStokes,(20	014),emarketing:TheE	EssentialGuide	toDigitalMarketi	ng,QuirkEducati	on.	
Tuten&Bikrar	njitRishi,SocialMedia	Marketing,3 rd	Ed.2020,SAGEP	ublishingIndia		
Dave Chaffe	ey, Fiona Ellis-Cha	dwick,Richard	Mayer, Kevin	Johnston,(2012),	
InternetMarke	ting:Strategy,Implem	entationandPra	actice,PrenticeH	all.		
LianaEvans,So	ocialMediaMarketing:S	trategiesforEn	gaginginFaceboo	k,Twitter&OtherS	Social	
Media,QuePu	blishing.					
VandanaAhuja	n,(DigitalMarketing,1st	edition,Oxford	UniversityPress.			
AvinashKausl	nik,WebAnalytics2.0:	TheArtofOnlin	neAccountability	andScienceofCu		
stomerCentric	ity,					
CliftonB.,Adv	ancedWebMetricswith	GoogleAnalyti	cs,WileyPublishi	ng,Inc.2nded.		
KaushikA.,W	ebAnalytics2.0,TheA1	tofOnlineAcc	o <mark>un</mark> tabilityandSc	eienceofCustome	rCen	
tricity,WileyP	ublishing,Inc.1sted.					
SterneJ.,Webl	Metrics:Provenmethod	lsformeasuring	g <mark>we</mark> bsite <mark>su</mark> ccess,	JohnWileyandSc	ons10.	
AnnmarieHan	llon,DigitalMarketing	,SAGEPublisł	ningIndia			
Online Resource	:					
https://www.upa	.it/static/upload/the/t	<u>he-fundament</u>	als-of-social-me	<u>dia-analytics.pdf</u>		
https://www.cisc	o.com/c/dam/global/f	i fi/assets/doc	s/SMB Universi	<u>ty 120307 Netw</u>	orking Fu	<u>ıda</u>
mentals.pdf		1	1	1		
K1-Remember	K2-Understand	K3-Apply	K4-Analyze	K5-Evaluate	K6-Creat	е
	1	1	Cour	se Designed by:	Dr.A.Nagara	ajan
	Course O	utcome VS Pr	ogramme Outco	mes		

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S(3)	S(3)	L(1)	M(2)	L(1)	S(3)	L(1)	M(2)	L (1)	L (1)
CO2	L (1)	L (1)	M (2)	L (1)	L (1)	S(3)	L(1)	M(2)	L (1)	L (1)
CO3	M(2)	M (2)	L(1)	L (1)	M(2)	S(3)	M (2)	M(2)	M(2)	L (1)
CO4	M(2)	M (2)	M (2)	L (1)	M(2)	S(3)	M (2)	M(2)	M(2)	L (1)
CO5	L(1)	L (1)	M(2)	L (1)	M(2)	S(3)	M (2)	M(2)	M(2)	L (1)
W. AV	1.8	1.6	1.2	1.2	1.6	3	1.6	2	1.6	1

S –Strong (3	, M-Medium	(2), L-	Low (1)
--------------	------------	---------	---------

СО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S (3)	S (3)	M (2)	L (1)	L (1)
CO2	M (2)				
CO3	M (2)	M (2)	M (2)	L (1)	M (2)
CO4	M (2)	L (1)	M (2)	S (3)	M (2)
CO5	M (2)	L (1)	M (2)	S (3)	M (2)
W.AV	2	1.8	2	2	1.8

Course Outcome VS Programme Specific Outcomes

S -Strong	(3),	M-Medium	(2),	L-	Low	(1)
------------------	------	-----------------	------	----	-----	-----

